首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   426篇
  免费   29篇
  2021年   7篇
  2020年   3篇
  2019年   4篇
  2018年   13篇
  2017年   5篇
  2016年   6篇
  2015年   24篇
  2014年   17篇
  2013年   24篇
  2012年   34篇
  2011年   41篇
  2010年   26篇
  2009年   21篇
  2008年   24篇
  2007年   22篇
  2006年   30篇
  2005年   32篇
  2004年   23篇
  2003年   9篇
  2002年   15篇
  2001年   9篇
  2000年   8篇
  1999年   3篇
  1998年   5篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
  1988年   1篇
  1987年   2篇
  1982年   3篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   6篇
  1969年   2篇
  1968年   3篇
  1967年   1篇
  1966年   3篇
  1965年   4篇
  1964年   5篇
  1960年   1篇
排序方式: 共有455条查询结果,搜索用时 31 毫秒
31.
Mycotoxins are fungal secondary metabolites that elicit a wide spectrum of toxicological effects, including the alteration of normal immune function. In the present study we investigated the independent effect of four mycotoxins, aflatoxin B1 (AFB1), fumonisin B1 (FB1), deoxynivalenol (DON) and nivalenol (NIV), on lymphocyte proliferation using human and porcine lymphocytes. Human and porcine peripheral blood mononuclear cells and porcine splenocytes were cultured with increasing concentrations of mycotoxins for 72 hours and labelled in the last 24 hours with [methyl-3H]-thymidine. The results showed that increased concentrations of AFB1, DON and NIV affected the [methyl-3H]-thymidine cellular proliferation following mitogen stimulation in both species and cell types. Lower concentrations of mycotoxins enhanced cellular proliferation, which was more pronounced in human than in porcine cells, while higher concentrations caused a dose-dependent decrease. DON and NIV were the most potent mycotoxin in both species and both cell types. Based on the results of this in vitro study, high correlations were found between proliferation of human and porcine lymphocytes after mycotoxin exposure, especially for DON and NIV.  相似文献   
32.
Two outlines for mixed model based approaches to quantitative trait locus (QTL) mapping in existing maize hybrid selection programs are presented: a restricted maximum likelihood (REML) and a Bayesian Markov Chain Monte Carlo (MCMC) approach. The methods use the in-silico-mapping procedure developed by Parisseaux and Bernardo (2004) as a starting point. The original single-point approach is extended to a multi-point approach that facilitates interval mapping procedures. For computational and conceptual reasons, we partition the full set of relationships from founders to parents of hybrids into two types of relations by defining so-called intermediate founders. QTL effects are defined in terms of those intermediate founders. Marker based identity by descent relationships between intermediate founders define structuring matrices for the QTL effects that change along the genome. The dimension of the vector of QTL effects is reduced by the fact that there are fewer intermediate founders than parents. Furthermore, additional reduction in the number of QTL effects follows from the identification of founder groups by various algorithms. As a result, we obtain a powerful mixed model based statistical framework to identify QTLs in genetic backgrounds relevant to the elite germplasm of a commercial breeding program. The identification of such QTLs will provide the foundation for effective marker assisted and genome wide selection strategies. Analyses of an example data set show that QTLs are primarily identified in different heterotic groups and point to complementation of additive QTL effects as an important factor in hybrid performance.  相似文献   
33.
Our previous studies have shown that diabetes in the male streptozotocin (STZ)-induced diabetic rat is characterized by a decrease in circulating testosterone and concomitant increase in estradiol levels. Interestingly, this increase in estradiol levels persists even after castration, suggesting extra-testicular origins of estradiol in diabetes. The aim of the present study was to examine whether other target organs of diabetes may be sources of estradiol. The study was performed in male Sprague–Dawley non-diabetic (ND), STZ-induced diabetic (D) and STZ-induced diabetic castrated (Dcas) rats (n = 8–9/group). 14 weeks of diabetes was associated with decreased testicular (ND, 26.3 ± 4.19; D, 18.4 ± 1.54; P < 0.05), but increased renal (ND, 1.83 ± 0.92; D, 7.85 ± 1.38; P < 0.05) and ocular (D, 23.4 ± 3.66; D, 87.1 ± 28.1; P < 0.05) aromatase activity. This increase in renal (Dcas, 6.30 ± 1.25) and ocular (Dcas, 62.7 ± 11.9) aromatase activity persisted after castration. The diabetic kidney also had increased levels of tissue estrogen (ND, 0.31 ± 0.01; D, 0.51 ± 0.11; Dcas, 0.45 ± 0.08) as well as estrogen receptor alpha protein expression (ND, 0.63 ± 0.09; D, 1.62 ± 0.28; Dcas, 1.38 ± 0.20). These data suggest that in male STZ-induced diabetic rats, tissues other than the testis may become sources of estradiol. In particular, the diabetic kidney appears to produce estradiol following castration, a state that is associated with a high degree or renal injury. Overall, our data provides evidence for the extra-testicular source of estradiol that in males, through an intracrine mechanism, may contribute to the development and/or progression of end-organ damage associated with diabetes.  相似文献   
34.
35.
Ferryl (Fe(IV)=O) species are involved in key enzymatic processes with direct biomedical relevance; among others, the uncontrolled reactivities of ferryl Mb (myoglobin) and Hb (haemoglobin) have been reported to be central to the pathology of rhabdomyolysis and subarachnoid haemorrhage. Rapid-scan stopped-flow methods have been used to monitor the spectra of the ferryl species in Mb and Hb as a function of pH. The ferryl forms of both proteins display an optical transition with pK approximately 4.7, and this is assigned to protonation of the ferryl species itself. We also demonstrate for the first time a direct correlation between Hb/Mb ferryl reactivity and ferryl protonation status, simultaneously informing on chemical mechanism and toxicity and with broader biochemical implications.  相似文献   
36.
37.
Novel substituted 5,7-diaryl-2,3-dihydro-1,4-diazepines and 4,6-diaryl-2-aminopyrimidines were synthesized and tested for their antiproliferative activity. Title compounds were obtained by cyclocondensation of a substituted flavone with ethylenediamine and guanidine respectively. The cytotoxicity in vitro against various human leukemic cancer cell lines viz., Jurkat, HL60, MOLT3, NCEB-1, K562 was determined.  相似文献   
38.
p21-activated kinases (Paks) have been shown to regulate cytoskeleton rearrangements, cell proliferation, attachment, and migration in a variety of cellular contexts, including endothelial cells. However, the role of endothelial Pak in embryo development has not been reported, and currently, there is no consensus on the endothelial function of individual Pak isoforms, in particular p21-activated kinase 2 (Pak2), the main Pak isoform expressed in endothelial cells. In this work, we employ genetic and molecular studies that show that Pak2, but not Pak1, is a critical mediator of development and maintenance of endothelial cell function. Endothelial depletion of Pak2 leads to early embryo lethality due to flawed blood vessel formation in the embryo body and yolk sac. In adult endothelial cells, Pak2 depletion leads to severe apoptosis and acute angiogenesis defects, and in adult mice, endothelial Pak2 deletion leads to increased vascular permeability. Furthermore, ubiquitous Pak2 deletion is lethal in adult mice. We show that many of these defects are mediated through a newly unveiled Pak2/Bmk1 pathway. Our results demonstrate that endothelial Pak2 is essential during embryogenesis and also for adult blood vessel maintenance, and they also pinpoint the Bmk1/Erk5 pathway as a critical mediator of endothelial Pak2 signaling.  相似文献   
39.
40.
Intersectin-1s (ITSN-1s), a five Src homology 3 (SH3) domain-containing protein, is critically required for caveolae and clathrin-mediated endocytosis (CME), due to its interactions with dynamin (dyn). Of the five SH3A-E domains, SH3A is unique because of its high affinity for dyn and potent inhibition of CME. However, the molecular mechanism by which SH3A integrates in the overall function of ITSN-1s to regulate the endocytic process is not understood. Using biochemical and functional approaches as well as high-resolution electron microscopy, we show that SH3A exogenously expressed in human lung endothelial cells caused abnormal endocytic structures, distorted caveolae clusters, frequent staining-dense rings around the caveolar necks and 60% inhibition of caveolae internalization. In vitro studies further revealed that SH3A, similar to full-length ITSN-1s stimulates dyn2 oligomerization and guanosine triphosphatase (GTP)ase activity, effects not detected when other SH3 domains of ITSN-1s were used as controls. Strikingly, in the presence of SH3A, dyn2-dyn2 interactions are stabilized and despite continuous GTP hydrolysis, dyn2 oligomers cannot disassemble. SH3A may hold up caveolae release from the plasma membrane and formation of free-transport vesicles, by prolonging the lifetime of assembled dyn2. Altogether, our results indicate that ITSN-1s, via its SH3A has the unique ability to regulate dyn2 assembly-disassembly and function during endocytosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号