首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   5篇
  国内免费   1篇
  2022年   2篇
  2021年   3篇
  2019年   2篇
  2018年   1篇
  2017年   4篇
  2016年   3篇
  2015年   1篇
  2014年   5篇
  2013年   4篇
  2012年   16篇
  2011年   16篇
  2010年   11篇
  2009年   10篇
  2008年   4篇
  2007年   7篇
  2006年   6篇
  2005年   6篇
  2004年   4篇
  2003年   7篇
  2002年   2篇
  1995年   1篇
排序方式: 共有115条查询结果,搜索用时 15 毫秒
51.
The Escherichia coli envelope stress response is controlled by the alternative sigma factor, σE, and is induced when unfolded outer membrane proteins accumulate in the periplasm. The response is initiated by sequential cleavage of the membrane-spanning antisigma factor, RseA. RseB is an important negative regulator of envelope stress response that exerts its negative effects onσE activity through its binding to RseA. In this study, we analyze the interaction between RseA and RseB. We found that tight binding of RseB to RseA required intact RseB. Using programs that performed global and local sequence alignment of RseB and RseA, we found regions of high similarity and performed alanine substitution mutagenesis to test the hypothesis that these regions were functionally important. This protocol is based on the hypothesis that functionally dependent regions of two proteins co-evolve and therefore are likely to be sequentially conserved. This procedure allowed us to identify both an N-terminal and C-terminal region in RseB important for binding to RseA. We extensively analyzed the C-terminal region, which aligns with a region of RseA coincident with the major RseB binding determinant in RseA. Both allele-specific suppression analysis and cysteine-mediated disulfide bond formation indicated that this C-terminal region of similarity of RseA and RseB identifies a contact site between the two proteins. We suggest a similar protocol can be successfully applied to pairs of non-homologous but functionally linked proteins to find specific regions of the protein sequences that are important for establishing functional linkage.The Escherichia coli σE-mediated envelope stress response is the major pathway to ensure homeostasis in the envelope compartment of the cell (1-3). σE regulon members encode periplasmic chaperones and proteases, the machinery for inserting β-barrel proteins into the outer membrane and components controlling the synthesis and assembly of LPS (4-6). This pathway is highly conserved among γ-proteobacteria (6).The σE response is initiated when periplasmic protein folding and assembly is compromised (7-9). During steady state growth, σE is inhibited by its antisigma factor, RseA, a membrane-spanning protein whose cytoplasmic domain binds to σE with picomolar affinity (10-13). Accumulation of unassembled porin monomers serves as a signal to activate the DegS protease to cleave RseA in its periplasmic domain (14, 15). This initiates a proteolytic cascade in which RseP cleaves periplasmically truncated RseA near or within the cytoplasmic membrane to release the RseAcytoplasmicE complex, and cytoplasmic ATP-dependent proteases complete the degradation of RseA thereby releasing active σE (16-19).RseB, a second negative regulator of the envelope stress response (11, 20, 21), binds to the periplasmic domain of RseA with nanomolar affinity. RseB is an important regulator of the response (2, 22, 23). It prevents RseP from degrading intact RseA, thereby ensuring that proteolysis is initiated only when the DegS protease is activated by a stress signal (21). Additionally, RseB prevents activated DegS from cleaving RseA, suggesting that interaction of RseB with RseA must be altered before the signal transduction cascade is activated (23).The goal of the present studies was to explore how RseB binds to RseA. The interaction partner of RseB is the unstructured periplasmic domain of RseA (RseA-peri). Within RseA-peri, amino acids ∼169-186 constitute a major binding determinant to RseB (23, 24). This peptide alone binds RseB with 6 μm affinity, and deleting this region abrogates binding to RseB (23). Additional regions of RseA-peri also contribute to RseB binding, as intact RseA-peri binds with 20 nm affinity to RseB (23). Much less is known about the regions of RseB required for interaction with RseA. RseB is homodimeric two-domain protein, whose large N-terminal domain shares structural homology with LolA, a protein that transports lipoproteins to outer membrane (24, 25). The smaller C-terminal domain is connected to the N-terminal domain by a linker, and the two domains share a large interface, which may facilitate interdomain signaling. Glutaraldehyde cross-linking studies indicate that the C-terminal domain interacts with RseA, but the regions of interaction were not identified (25).In the present report, we study the interaction of RseB and RseA. We establish that both domains of RseB interact with RseA-peri. Using a global sequence alignment, we discovered several regions in RseA and RseB that had high sequence similarity, despite the low overall sequence similarity between these two proteins, a finding that was independently confirmed by a local sequence similarity algorithm. This suggested that these regions were functionally dependent, and we performed a set of mutagenesis experiments designed to test this idea. Our studies of the binding properties of these mutants revealed that regions in both the N terminus and C terminus of RseB modulate interaction with RseA. Moreover, genetic suppression analysis and cysteine-mediated disulfide bond formation suggest that the region of RseA/B with highest similarity (RseA residues 165-191 (major binding determinant in RseA) and RseB residues 233-258) are interacting partners.  相似文献   
52.
53.
Polyaniline/carbon nanotubes composite (PANI‐CNT) electrochemically deposited onto indium‐tin‐oxide (ITO) coated glass plate has been utilized for Neisseria gonorrhoeae detection by immobilizing 5′‐amino‐labeled Neisseria gonorrhoeae probe (aDNA) using glutaraldehyde as a cross‐linker. PANI‐CNT/ITO and aDNA‐Glu‐PANI‐CNT/ITO electrodes have been characterized using scanning electron microscopy (SEM), Fourier Transform Infrared (FT‐IR) spectroscopy, cyclic voltammetry (CV), and differential pulse voltammetry (DPV). This bioelectrode can be used to detect N. gonorrhoeae using methylene blue (MB) as redox indicator with response time of 60 s and stability of about 75 days when stored under refrigerated conditions. DPV studies reveal that this bioelectrode can detect complementary DNA concentration from 1 × 10?6 M to 1 × 10?17 M with detection limit of 1.2 × 10?17 M. Further, this bioelectrode (aDNA‐Glu‐PANI‐CNT/ITO) exhibits specificity toward N. gonorrhoeae species and shows negative response with non‐Neisseria gonorrhoeae Neisseria species (NgNS) and other gram negative bacteria (GNB). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
54.
Under-nutrition is a known risk factor for TB and can adversely affect treatment outcomes. However, data from India are sparse, despite the high burden of TB as well as malnutrition in India. We assessed the nutritional status at the time of diagnosis and completion of therapy, and its association with deaths during TB treatment, in a consecutive cohort of 1695 adult patients with pulmonary tuberculosis in rural India during 2004 - 2009.Multivariable logistic regression was used to obtain adjusted estimates of the association of nutritional status with deaths during treatment. At the time of diagnosis, median BMI and body weights were 16.0 kg/m2and 42.1 kg in men, and 15.0 kg/m2and 34.1 kg in women, indicating that 80% of women and 67% of men had moderate to severe under-nutrition (BMI<17.0 kg/m2). Fifty two percent of the patients (57% of men and 48% of women) had stunting indicating chronic under-nutrition. Half of women and one third of men remained moderately to severely underweight at the end of treatment. 60 deaths occurred in 1179 patients (5%) in whom treatment was initiated. Severe under-nutrition at diagnosis was associated with a 2 fold higher risk of death. Overall, a majority of patients had evidence of chronic severe under-nutrition at diagnosis, which persisted even after successful treatment in a significant proportion of them. These findings suggest the need for nutritional support during treatment of pulmonary TB in this rural population.  相似文献   
55.
The trimeric envelope glycoprotein (Env) spikes displayed on the surfaces of simian immunodeficiency virus (SIV) and human immunodeficiency virus type 1 (HIV-1) virions are composed of three heterodimers of the viral glycoproteins gp120 and gp41. Although binding of gp120 to cell surface CD4 and a chemokine receptor is known to elicit conformational changes in gp120 and gp41, changes in quaternary structure of the trimer have only recently been elucidated. For the HIV-1 BaL isolate, CD4 attachment results in a striking rearrangement of the trimer from a "closed" to an "open" conformation. The effect of CD4 on SIV trimers, however, has not been described. Using cryo-electron tomography, we have now determined molecular architectures of the soluble CD4 (sCD4)-bound states of SIV Env trimers for three different strains (SIVmneE11S, SIVmac239, and SIV CP-MAC). In marked contrast to HIV-1 BaL, SIVmneE11S and SIVmac239 Env showed only minor conformational changes following sCD4 binding. In SIV CP-MAC, where trimeric Env displays a constitutively "open" conformation similar to that seen for HIV-1 BaL Env in the sCD4-complexed state, we show that there are no significant further changes in conformation upon the binding of either sCD4 or 7D3 antibody. The density maps also show that 7D3 and 17b antibodies target epitopes on gp120 that are on opposites sides of the coreceptor binding site. These results provide new insights into the structural diversity of SIV Env and show that there are strain-dependent variations in the orientation of sCD4 bound to trimeric SIV Env.  相似文献   
56.
57.
To identify new structure-function correlations in the γ domain of streptokinase, mutants were generated by error-prone random mutagenesis of the γ domain and its adjoining region in the β domain followed by functional screening specifically for substrate plasminogen activation. Single-site mutants derived from various multipoint mutation clusters identified the importance of discrete residues in the γ domain that are important for substrate processing. Among the various residues, aspartate at position 328 was identified as critical for substrate human plasminogen activation through extensive mutagenesis of its side chain, namely D328R, D328H, D328N, and D328A. Other mutants found to be important in substrate plasminogen activation were, namely, R319H, N339S, K334A, K334E, and L335Q. When examined for their 1:1 interaction with human plasmin, these mutants were found to retain the native-like high affinity for plasmin and also to generate amidolytic activity with partner plasminogen in a manner similar to wild type streptokinase. Moreover, cofactor activities of the mutants precomplexed with plasmin against microplasminogen as the substrate as well as in silico modeling studies suggested that the region 315-340 of the γ domain interacts with the serine protease domain of the macromolecular substrate. Overall, our results identify the presence of a substrate specific exosite in the γ domain of streptokinase.  相似文献   
58.
A high-performance amperometric polyphenol biosensor was developed, based on covalent immobilization of Ganoderma sp. laccase onto copper nanoparticles (CuNP's)/chitosan (CHIT)/carboxylated multiwalled carbon nanotube (cMWCNT)/polyaniline (PANI)-modified gold (Au) electrode. The CuNP's and cMWCNT had a synergistic electrocatalytic effect in the matrix of CHIT. The biosensor showed optimum response at pH 6.0 (0.1 M acetate buffer) and 35 °C, when operated at 50 mV s−1. The biosensor exhibited excellent sensitivity (the detection limit was down to 0.156 μM for guaiacol), fast response time (less than 4 s) and wide linear range (from 1 to 500 μM). Analytical recovery of added guaiacol was 96.40-98.46%. Within batch and between batch coefficients of variation were <2.6% and <5.3%, respectively. The enzyme electrode was used 300 times over a period of 7 months, when stored at 4 °C.  相似文献   
59.
Leukocyte [white blood cell (WBC)] adhesion and shedding of glycans from the endothelium [endothelial cells (ECs)] in response to the chemoattractant f-Met-Leu-Phe (fMLP) has been shown to be attenuated by topical inhibition of matrix metalloproteases (MMPs) with doxycycline (Doxy). Since Doxy also chelates divalent cations, these responses were studied to elucidate the relative roles of cation chelation and MMP inhibition. WBC-EC adhesion, WBC rolling flux, and WBC rolling velocity were studied in postcapillary venules in the rat mesentery during superfusion with the cation chelator EDTA or Doxy. Shedding and accumulation of glycans on ECs, with and without fMLP, were quantified by the surface concentration of lectin (BS-1)-coated fluorescently labeled microspheres (FLMs) during constant circulating concentration. Without fMLP, low concentrations of EDTA (1-3 mM) increased FLM-EC sequestration due to disruption of the permeability barrier with prolonged exposure. In contrast, with 0.5 μM Doxy alone, FLM adhesion remained constant (i.e., no change in glycan content) on ECs, and WBC adhesion increased with prolonged superfusion. Without fMLP, EDTA did not affect firm WBC-EC adhesion but reduced WBC rolling flux in a dose-dependent manner. With fMLP, EDTA did not inhibit WBC adhesion, whereas Doxy did during the first 20 min of superfusion. Thus, the inhibition by Doxy of glycan (FLM) shedding and WBC adhesion in response to fMLP results from MMP inhibition, in contrast to cation chelation. With either Doxy or the MMP inhibitor GM-6001, WBC rolling velocity decreased by 50%, as in the case with fMLP, suggesting that MMP inhibition reduces sheddase activity, which increases the adhesiveness of rolling WBCs. These events increase the effective leukocrit on the venular wall and increase firm WBC-EC adhesion. Thus, MMP inhibitors have both a proadhesion effect by reducing sheddase activity while exerting an antiadhesion effect by inhibiting glycocalyx shedding and subsequent exposure of adhesion molecules on the EC surface.  相似文献   
60.
Since its discovery nearly 30 years ago, more than 60 million people have been infected with the human immunodeficiency virus (HIV) (www.usaid.gov). The virus infects and destroys CD4+ T-cells thereby crippling the immune system, and causing an acquired immunodeficiency syndrome (AIDS) 2. Infection begins when the HIV Envelope glycoprotein "spike" makes contact with the CD4 receptor on the surface of the CD4+ T-cell. This interaction induces a conformational change in the spike, which promotes interaction with a second cell surface co-receptor 5,9. The significance of these protein interactions in the HIV infection pathway makes them of profound importance in fundamental HIV research, and in the pursuit of an HIV vaccine.The need to better understand the molecular-scale interactions of HIV cell contact and neutralization motivated the development of a technique to determine the structures of the HIV spike interacting with cell surface receptor proteins and molecules that block infection. Using cryo-electron tomography and 3D image processing, we recently demonstrated the ability to determine such structures on the surface of native virus, at ˜20 Å resolution 9,14. This approach is not limited to resolving HIV Envelope structures, and can be extended to other viral membrane proteins and proteins reconstituted on a liposome. In this protocol, we describe how to obtain structures of HIV envelope glycoproteins starting from purified HIV virions and proceeding stepwise through preparing vitrified samples, collecting, cryo-electron microscopy data, reconstituting and processing 3D data volumes, averaging and classifying 3D protein subvolumes, and interpreting results to produce a protein model. The computational aspects of our approach were adapted into modules that can be accessed and executed remotely using the Biowulf GNU/Linux parallel processing cluster at the NIH (http://biowulf.nih.gov). This remote access, combined with low-cost computer hardware and high-speed network access, has made possible the involvement of researchers and students working from school or home.Download video file.(47M, mov)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号