首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   448篇
  免费   21篇
  2023年   1篇
  2022年   3篇
  2021年   18篇
  2020年   4篇
  2019年   9篇
  2018年   8篇
  2017年   3篇
  2016年   18篇
  2015年   30篇
  2014年   17篇
  2013年   35篇
  2012年   35篇
  2011年   45篇
  2010年   22篇
  2009年   21篇
  2008年   18篇
  2007年   39篇
  2006年   21篇
  2005年   33篇
  2004年   21篇
  2003年   22篇
  2002年   14篇
  2001年   1篇
  2000年   2篇
  1999年   4篇
  1998年   7篇
  1997年   3篇
  1996年   2篇
  1994年   2篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1981年   2篇
  1967年   1篇
排序方式: 共有469条查询结果,搜索用时 510 毫秒
81.
Neozygites tanajoae is an entomopathogenic fungus which has been used for biocontrol of the cassava green mite (Mononychellus tanajoa, CGM) in Africa. Establishment and dispersal of Brazilian isolates which have been introduced into some African countries in recent years to improve CGM control was followed with specific PCR assays. Two primer pairs, NEOSSU_F/NEOSSU_R and 8DDC_F/8DDC_R, were used to differentiate isolates collected from several locations in Brazil and from three countries in Africa, Benin, Ghana and Tanzania. The first primer pair enabled the species-specific detection of Neozygites tanajoae, while the second differentiated the Brazilian isolates from those of other geographical origin. PCR assays were designed for detection of fungal DNA in the matrix of dead infested mites since N. tanajoae is difficult to isolate and culture on selective artificial media. Our results show that all isolates (Brazilian and African) that sporulated on mummified mites were amplified with the first primer pair confirming their Neozygites tanajoae identity. The second pair amplified DNA from all the Brazilian isolates, but did not amplify any DNA samples from the African isolates. None of the two primers showed amplification neither from any of the non-sporulating mite extracts nor from the dead uninfected mites used as negative controls. We confirmed that the two primer pairs tested are suitable for the detection and differential identification of N. tanajoae isolates from Brazil and Africa and that they are useful to monitor the establishment and spread of the Brazilian isolates of N. tanajoae introduced into Benin or into other African countries for improvement of CGM biocontrol.  相似文献   
82.
The monoalkyltriazene moiety lends itself well to the design of combi-molecules. However, due to its instability under physiological conditions, efforts were directed towards stabilizing it by grafting a hydrolysable carbamate onto the 3-position. The synthesis and biological activities of these novel N-carbamyl triazenes are described.  相似文献   
83.
The objective of this work is to evaluate the ability of some additive substances in protecting the biocontrol agent Candida oleophila (strain O) against the adverse effects of environmental factors, such as water activity (aw, 0.93 and 0.98) and relative humidity (75% and 98%). The protection obtained with various protectant substances, skimmed milk (SM), peptone, maltose, sucrose, sorbitol, lactose and polyethylene glycol was assayed under in vitro and in vivo conditions. The yeast cells with the highest level of protecting agents (1%) had higher viability than those with low protectant levels (0.1% and 0.5%). SM, sucrose and sorbitol improved significantly the C. oleophila survival on apple fruit surface by 80.8%, 42.26% and 37.27% and gave a significant protection (from 96% to 100%) against Penicillium expansum under dried conditions. The highest strain O density and efficacy was obtained with SM. Under experimental conditions reflecting practical conditions, SM applied in combination with the strain O resulted in improved biocontrol efficacy by 74.65%. Therefore, SM could be used as material substrate with the best sugar protectants during the formulation process of this antagonistic yeast for eventual pre-harvest application.  相似文献   
84.
The essential‐oil composition of 60 individual trees of Juniperus phoenicea L. from four Tunisian populations in three different periods were investigated by GC and GC/MS analyses. 59 Compounds were identified in the oils, and a relatively high variation in their contents was found. All the oils were dominated by the terpenic hydrocarbon fraction, and the main component was α‐pinene (20.28–40.86%). The results of the oil compositions were processed by hierarchical clustering and principal component analysis (PCA) allowing establishing four groups of essential‐oils differentiated by one compound or more. Pattern of geographic variation in essential‐oil composition indicated that individuals from the continental site (Makthar) were clearly distinguished from those from littoral localities (Tabarka, Hawaria, and Rimel).  相似文献   
85.
In biomechanics, the calculation of individual muscle forces during movements is based on a model of the musculoskeletal system and a method for extracting a unique set of muscle forces. To obtain a unique set of muscle forces, non-linear, static optimisation is commonly used. However, the optimal solution is dependent on the musculoskeletal geometry, and single joints may be represented using one, two or three degrees-of-freedom. Frequently, a system with multiple degrees-of-freedom is replaced with a system that contains a subset of all the possible degrees-of-freedom. For example, the cat ankle joint is typically modelled as a planar joint with its primary degree-of-freedom (plantar-dorsiflexion), whereas, the actual joint has three rotational degrees-of-freedom. Typically, such simplifications are justified by the idea that the reduced case is contained as a specific solution of the more general case. However, here we demonstrate that the force-sharing solution space of a general, three degrees-of-freedom musculoskeletal system does not necessarily contain the solutions from the corresponding one or two degrees-of-freedom systems. Therefore, solutions of a reduced system, in general, are not sub-set solutions of the actual three degrees-of-freedom system, but are independent solutions that are often incompatible with solutions of the actual system. This result shows that representing a three degrees-of-freedom system as a one or two degrees-of-freedom system gives force-sharing solutions that cannot be extrapolated to the actual system, and vice-versa. These results imply that general solutions cannot be extracted from models with fewer degrees-of-freedom than the actual system. They further emphasise the need for precise geometric representation of the musculoskeletal system, if general force-sharing rules are to be derived.  相似文献   
86.
Tissue engineering offers an interesting alternative to current anterior cruciate ligament (ACL) surgeries. Indeed, a tissue-engineered solution could ideally overcome the long-term complications due to actual ACL reconstruction by being gradually replaced by biological tissue. Key requirements concerning the ideal scaffold for ligament tissue engineering are numerous and concern its mechanical properties, biochemical nature, and morphology. This study is aimed at predicting the morphology of a novel scaffold for ligament tissue engineering, based on multilayer braided biodegradable copoly(lactic acid-co-(e-caprolactone)) (PLCL) fibers The process used to create the scaffold is briefly presented, and the degradations of the material before and after the scaffold processing are compared. The process offers varying parameters, such as the number of layers in the scaffold, the pitch length of the braid, and the fibers' diameter. The prediction of the morphology in terms of pore size distribution and pores interconnectivity as a function of these parameters is performed numerically using an original method based on a virtual scaffold. The virtual scaffold geometry and the prediction of pore size distribution are evaluated by comparison with experimental results. The presented process permits creation of a tailorable scaffold for ligament tissue engineering using basic equipment and from minimum amounts of raw material. The virtual scaffold geometry closely mimics the geometry of real scaffolds, and the prediction of the pore size distribution is found to be in good accordance with measurements on real scaffolds. The scaffold offers an interconnected network of pores the sizes of which are adjustable by playing on the process parameters and are able to match the ideal pore size reported for tissue ingrowth. The adjustability of the presented scaffold could permit its application in both classical ACL reconstructions and anatomical double-bundle reconstructions. The precise knowledge of the scaffold morphology using the virtual scaffold will be useful to interpret the activity of cells once it will be seeded into the scaffold. An interesting perspective of the present work is to perform a similar study aiming at predicting the mechanical response of the scaffold according to the same process parameters, by implanting the virtual scaffold into a finite element algorithm.  相似文献   
87.
Temperate bacteriophage lytic development is intrinsically related to the stress response in particular at the DNA replication and virion maturation steps. Alternatively, temperate phages become lysogenic and integrate their genome into the host chromosome. Under stressful conditions, the prophage resumes a lytic development program, and the phage DNA is excised before being replicated. The KplE1 defective prophage of Escherichia coli K12 constitutes a model system because it is fully competent for integrative as well as excisive recombination and presents an atypical recombination module, which is conserved in various phage genomes. In this work, we identified the host-encoded stress-responsive molecular chaperone DnaJ (Hsp40) as an active participant in KplE1 prophage excision. We first show that the recombination directionality factor TorI of KplE1 specifically interacts with DnaJ. In addition, we found that DnaJ dramatically enhances both TorI binding to its DNA target and excisive recombination in vitro. Remarkably, such stimulatory effect by DnaJ was performed independently of its DnaK chaperone partner and did not require a functional DnaJ J-domain. Taken together, our results underline a novel and unsuspected functional interaction between the generic host stress-regulated chaperone and temperate bacteriophage lysogenic development.  相似文献   
88.
Bone morphogenetic protein 10 (BMP10) is a member of the TGF-β superfamily and plays a critical role in heart development. In the postnatal heart, BMP10 is restricted to the right atrium. The inactive pro-BMP10 (~60 kDa) is processed into active BMP10 (~14 kDa) by an unknown protease. Proteolytic cleavage occurs at the RIRR(316)↓ site (human), suggesting the involvement of proprotein convertase(s) (PCs). In vitro digestion of a 12-mer peptide encompassing the predicted cleavage site with furin, PACE4, PC5/6, and PC7, showed that furin cleaves the best, whereas PC7 is inactive on this peptide. Ex vivo studies in COS-1 cells, a cell line lacking PC5/6, revealed efficient processing of pro-BMP10 by endogenous PCs other than PC5/6. The lack of processing of overexpressed pro-BMP10 in the furin- and PACE4-deficient cell line, CHO-FD11, and in furin-deficient LoVo cells, was restored by stable (CHO-FD11/Fur cells) or transient (LoVo cells) expression of furin. Use of cell-permeable and cell surface inhibitors suggested that endogenous PCs process pro-BMP10 mostly intracellularly, but also at the cell surface. Ex vivo experiments in mouse primary hepatocytes (wild type, PC5/6 knock-out, and furin knock-out) corroborated the above findings that pro-BMP10 is a substrate for endogenous furin. Western blot analyses of heart right atria extracts from wild type and PACE4 knock-out adult mice showed no significant difference in the processing of pro-BMP10, implying no in vivo role of PACE4. Overall, our in vitro, ex vivo, and in vivo data suggest that furin is the major convertase responsible for the generation of BMP10.  相似文献   
89.
90.
As DNA repair enzymes are essential for preserving genome integrity, understanding their substrate interaction dynamics and the regulation of their catalytic mechanisms is crucial. Using single-molecule imaging, we investigated the association and dissociation kinetics of the bipolar endonuclease NucS from Pyrococcus abyssi (Pab) on 5′ and 3′-flap structures under various experimental conditions. We show that association of the PabNucS with ssDNA flaps is largely controlled by diffusion in the NucS-DNA energy landscape and does not require a free 5′ or 3′ extremity. On the other hand, NucS dissociation is independent of the flap length and thus independent of sliding on the single-stranded portion of the flapped DNA substrates. Our kinetic measurements have revealed previously unnoticed asymmetry in dissociation kinetics from these substrates that is markedly modulated by the replication clamp PCNA. We propose that the replication clamp PCNA enhances the cleavage specificity of NucS proteins by accelerating NucS loading at the ssDNA/dsDNA junctions and by minimizing the nuclease interaction time with its DNA substrate. Our data are also consistent with marked reorganization of ssDNA and nuclease domains occurring during NucS catalysis, and indicate that NucS binds its substrate directly at the ssDNA-dsDNA junction and then threads the ssDNA extremity into the catalytic site. The powerful techniques used here for probing the dynamics of DNA-enzyme binding at the single-molecule have provided new insight regarding substrate specificity of NucS nucleases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号