首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   320篇
  免费   30篇
  2023年   2篇
  2022年   1篇
  2021年   3篇
  2020年   5篇
  2019年   1篇
  2018年   8篇
  2017年   4篇
  2016年   4篇
  2015年   9篇
  2014年   11篇
  2013年   20篇
  2012年   32篇
  2011年   21篇
  2010年   14篇
  2009年   7篇
  2008年   14篇
  2007年   22篇
  2006年   23篇
  2005年   17篇
  2004年   22篇
  2003年   19篇
  2002年   14篇
  2001年   8篇
  2000年   6篇
  1999年   4篇
  1998年   2篇
  1997年   2篇
  1996年   5篇
  1995年   3篇
  1994年   1篇
  1992年   1篇
  1991年   4篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1985年   1篇
  1984年   5篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1979年   5篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
  1969年   1篇
  1966年   1篇
排序方式: 共有350条查询结果,搜索用时 15 毫秒
101.
A fast and reliable method for the separation and quantitation of arachidonic acid metabolites PGF, PGF, PGD2, PGE1, PGE2, PGB2, PGA2, 6-keto PGE1, 6-keto PGF, T×B2 and 15-keto PGE2 by high-performance liquid chromatography has been developed. Utilizing a single reverse-phase column and a UV spectrophotometer, sensitivity as little as 30 nanograms of each of these prostaglandins can be separated and subsequently detected. Although this study was performed using standards, it is highly promising for future application to biological fluids.  相似文献   
102.
103.
The enthalpies of binding of chloroquine and quinacrine to DNA at different molar ratios of drug to DNA and at different ionic strengths have been measured. The limiting values obtained with quinacrine fall in the range found for typical intercalating agents (e.g., ethidium, proflavin, adriamycin), whereas the value obtained with chloroquine is always zero, independent of the ratio of drug to DNA and ionic strength. The dilatometric measurements performed on the same systems and on the ethidium–DNA system show that when ethidium and quinacrine bind to DNA at low drug/DNA ratios, a volume decrease of about 16 mL/mol of bound drug occurs. No change in volume is observed when the two drugs bind to DNA through external, electrostatic forces. The volume change can be attributed to the loss of structured water around hydrophobic moieties of the drug molecules, following intercalation. In contrast, chloroquine binding to DNA at low drug/DNA ratios is characterized by a volume change distinctly smaller than that shown by quinacrine. The low ΔVB and ΔHB values shown by chloroquine are discussed in terms of the mechanism of interaction with DNA.  相似文献   
104.
Pro-inflammatory cytokines contribute to the decline in islet function during the development of diabetes. Cytokines can disrupt insulin secretion and calcium dynamics; however, the mechanisms underlying this are poorly understood. Connexin36 gap junctions coordinate glucose-induced calcium oscillations and pulsatile insulin secretion across the islet. Loss of gap junction coupling disrupts these dynamics, similar to that observed during the development of diabetes. This study investigates the mechanisms by which pro-inflammatory cytokines mediate gap junction coupling. Specifically, as cytokine-induced NO can activate PKCδ, we aimed to understand the role of PKCδ in modulating cytokine-induced changes in gap junction coupling. Isolated mouse and human islets were treated with varying levels of a cytokine mixture containing TNF-α, IL-1β, and IFN-γ. Islet dysfunction was measured by insulin secretion, calcium dynamics, and gap junction coupling. Modulators of PKCδ and NO were applied to determine their respective roles in modulating gap junction coupling. High levels of cytokines caused cell death and decreased insulin secretion. Low levels of cytokine treatment disrupted calcium dynamics and decreased gap junction coupling, in the absence of disruptions to insulin secretion. Decreases in gap junction coupling were dependent on NO-regulated PKCδ, and altered membrane organization of connexin36. This study defines several mechanisms underlying the disruption to gap junction coupling under conditions associated with the development of diabetes. These mechanisms will allow for greater understanding of islet dysfunction and suggest ways to ameliorate this dysfunction during the development of diabetes.  相似文献   
105.
Structural and functional analysis of human cytomegalovirus US3 protein   总被引:3,自引:0,他引:3  
Human cytomegalovirus (HCMV) unique short region 3 (US3) protein, a type I membrane protein, prevents maturation of class I major histocompatibility complex (MHC) molecules by retaining them in the endoplasmic reticulum (ER) and thus helps inhibit antigen presentation to cytotoxic T cells. US3 molecules bind to class I MHC molecules in a transient fashion but retain them very efficiently in the ER nonetheless. The US3 luminal domain is responsible for ER retention of US3 itself, while both the US3 luminal and transmembrane domains are necessary for retaining class I MHC in the ER. We have expressed the luminal domain of US3 molecule in Escherichia coli and analyzed its secondary structure by using nuclear magnetic resonance. We then predicted the US3 tertiary structure by modeling it based on the US2 structure. Unlike the luminal domain of US2, the US3 luminal domain does not obviously interact with class I MHC molecules. The luminal domain of US3 dynamically oligomerizes in vitro and full-length US3 molecules associate with each other in vivo. We present a model depicting how dynamic oligomerization of US3 may enhance its ability to retain class I molecules within the ER.  相似文献   
106.
The synthesis of negatively and positively charged polyelectrolytes from scleroglucan is described. Polycarboxylates were synthesised through nucleophilic substitution with chloroacetic acid or through a selective 2,2,6,6-tetramethyl-l-piperidinyloxy (TEMPO)-mediated oxidation of the primary alcohol groups. Amine groups were introduced through nucleophilic substitution with 2-chloroethylamine or 3-chloropropylamine. Reaction conditions were varied to obtain insight into the influence of variables on the degree of substitution. The conformational behaviour of the obtained polyelectrolytes was studied as a function of pH, temperature and solvent. For the products with a low degree of modification, evidence of an ordered conformation was found, whereas the polymers with a higher degree of modification behaved as random coils in solution. The negatively charged polymers were reticulated using the Ugi four-component condensation, obtaining negatively charged hydrogels. The positively charged polymers were reticulated using diethyl squarate (3,4-diethoxy-3-cyclobutene-1,2-dion, DES) to obtain positively charged hydrogels.  相似文献   
107.
The potent sphingolipid metabolite sphingosine 1-phosphate is produced by phosphorylation of sphingosine catalyzed by sphingosine kinase (SphK) types 1 and 2. In contrast to pro-survival SphK1, the putative BH3-only protein SphK2 inhibits cell growth and enhances apoptosis. Here we show that SphK2 catalytic activity also contributes to its ability to induce apoptosis. Overexpressed SphK2 also increased cytosolic free calcium induced by serum starvation. Transfer of calcium to mitochondria was required for SphK2-induced apoptosis, as cell death and cytochrome c release was abrogated by inhibition of the mitochondrial Ca(2+) transporter. Serum starvation increased the proportion of SphK2 in the endoplasmic reticulum and targeting SphK1 to the endoplasmic reticulum converted it from anti-apoptotic to pro-apoptotic. Overexpression of SphK2 increased incorporation of [(3)H]palmitate, a substrate for both serine palmitoyltransferase and ceramide synthase, into C16-ceramide, whereas SphK1 decreased it. Electrospray ionizationmass spectrometry/mass spectrometry also revealed an opposite effect on ceramide mass levels. Importantly, specific down-regulation of SphK2 reduced conversion of sphingosine to ceramide in the recycling pathway and conversely, down-regulation of SphK1 increased it. Our results demonstrate that SphK1 and SphK2 have opposing roles in the regulation of ceramide biosynthesis and suggest that the location of sphingosine 1-phosphate production dictates its functions.  相似文献   
108.
Methylprednisolone steroid esters of hyaluronan differing in degree of functionalization and molecular weight were investigated in aqueous solution. Conformation and aggregation phenomena were elucidated by means of circular dichroism, viscometry, rheology, and nuclear magnetic resonance, mainly by (1)H pulsed field gradient (PFG) NMR, which allows the determination of the diffusion coefficient of the species under investigation. The functionalization of hyaluronan with the steroid induces a reduction of the molecular volume, as a consequence of intramolecular hydrophobic interactions. For concentrated samples we have observed the coexistence of unimolecular collapsed chains and of aggregates, the latter disappearing upon dilution. The methylprednisolone ester of lower molecular weight hyaluronan has a larger molecular volume than its higher molecular weight analogue, even though still smaller than the underivatized polymer. This effect can be explained with the reduced flexibility of the polymer backbone probably impairing intramolecular interactions.  相似文献   
109.
During the winter 2003--2004 a serious disease was observed in protected tomato crops in Castrovillari, Reggio Calabria province, Southern Italy. Symptoms consisted in marginal leaf yellowing, leaf curling, plant stunting, flower abortion. The disease was detected in a group of greenhouses (about 10ha) where several tomato cultivars were grown hydroponically. The highest incidence of infection (60-100%) was observed in tomatoes grafted on Beaufort DRS tomato rootstock. Since the symptoms were similar to those described for Tomato yellow leaf curl Sardinia virus (TYLCSV) and Tomato yellow leaf curl virus (TYLCV), detection assays for these viruses were used. In DAS-ELISA positive results were obtained with a abroad-spectrums reagent combination (distributed by Bioreba AG) detecting TYLCV, TYLCSV, and other begomoviruses. When DNA probes were used in tissue print assays, positive reactions were obtained for TYLCSV, but not for TYLCV. The two probes consisted of digoxigenin-labelled DNAs representing the coat protein gene of either TYLCSV or TYLCV. Attempts to isolate the viral agent by mechanical inoculation failed, except in few cases where Potato virus Y and Tobacco mosaic virus were identified following transmission from symptomatic plants to herbaceous indicatorpplants. By contrast, grafting onto tomato seedlings always successfully transmitted the disease. In the Castrovillari area TYLCSV was not reported before. The rootstocks that nurseries used for grafting were obtained from Sicily, where the disease is endemic and both TYLCSV and TYLCV are widespread. Probably the grafted plantlets represented the primary source of infection from which subsequent diffusion by way of the vector Bemisia tabaci followed. In fact the vector had previously been detected in both the glasshouse-grown and open field tomato crops in Calabria region. TYLCV was previously reported in a different area of Calabria in 1991, but apparently it was an occasional outbreak, and B. tabaci was not detected. Since in the Castrovillari area surveyed in the present study tomato is grown throughtout the year in protected crops, the whitefly vector of the virus is present, and some natural hosts of the virus are found, it is feared that TYLCSV may become endemic, as already happened in Sicily, Sardinia, and Spain several years ago. In Spain and Sicily TYLCV, together with TYLCSV, was reported as the causal agent of very severe tomato crop losses. Therefore the danger exists that also TYLCV will reach this area, furthermore complicating the management of tomato crops.  相似文献   
110.
It is now largely accepted that ribosomal proteins may be implicated in a variety of biological functions besides that of components of the translation machinery. Many evidences show that a subset of ribosomal proteins are involved in the regulation of the cell cycle and apoptosis through modulation of p53 activity. In addition, p53-independent mechanisms of cell cycle arrest in response to alterations of ribosomal proteins availability have been described. Here, we identify human rpL3 as a new regulator of cell cycle and apoptosis through positive regulation of p21 expression in a p53-independent system. We demonstrate that the rpL3-mediated p21 upregulation requires the specific interaction between rpL3 and Sp1. Furthermore, in our experimental system, p21 overexpression leads to a dual outcome, activating the G₁/S arrest of the cell cycle or the apoptotic pathway through mitochondria, depending on its intracellular levels. It is noteworthy that depletion of p21 abrogates both effects. Taken together, our findings unravel a novel extraribosomal function of rpL3 and reinforce the proapoptotic role of p21 in addition to its widely reported ability as an inhibitor of cell proliferation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号