首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   1篇
  国内免费   4篇
  2024年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2017年   1篇
  2016年   3篇
  2015年   4篇
  2014年   2篇
  2013年   7篇
  2012年   2篇
  2011年   3篇
  2010年   5篇
  2009年   9篇
  2008年   4篇
  2007年   3篇
  2006年   4篇
  2005年   3篇
  2004年   2篇
  2003年   5篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1996年   3篇
  1995年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1978年   3篇
  1976年   1篇
  1972年   1篇
  1971年   1篇
  1968年   1篇
  1964年   1篇
  1962年   1篇
  1960年   1篇
  1959年   1篇
  1958年   2篇
  1957年   4篇
  1954年   2篇
  1952年   1篇
  1950年   1篇
  1928年   1篇
排序方式: 共有101条查询结果,搜索用时 328 毫秒
71.
马肠道非常发达,其中定居着丰富又复杂的微生物菌群,这些微生物在宿主的生理、代谢、营养和免疫功能等方面有着重要作用.基于高通量测序的宏基因组学技术和分析手段的改进,对复杂环境中微生物的研究更加方便、透彻.本文就基于高通量测序的宏基因组技术在马肠道核心菌群、不同肠道段菌群结构、不同因素对肠道菌群结构的影响,以及马肠道微生物...  相似文献   
72.
Abstract.
  • 1 Nectivore foraging environments are typically modelled as choices among non-fluctuating rewards, but in reality they often consist of intermittent daily nectar and pollen sources. Intermittent rewards create two distinct foraging problems for colonial nectivores: re-recruitment (periodically returning to intermittent rewards) and re-allocation (finding new rewards).
  • 2 The role of scent in learning and remembering the locations of discontinuous nectar rewards was examined by testing re-recruitment efficiency of Apis cerana and A.dorsata to reward-correlated scents (odour discriminant self-conditioning). Experiments examined the responses of non-naive foragers to an odour correlated with prior reward, and to odours not correlated with prior rewards, by placing different scents into a colony and observing the number of bees re-recruited to a feeding station.
  • 3 Re-recruitment of non-naive foragers in both species was significantly greater in response to the conditioning scent than to the experimental controls. However, species behaviour differed in one aspect; re-recruited A.cerana foragers landed on the feeding station when unscented reward was offered, whereas re-recruited A.dorsata foragers returned but would not land without conditioning scent present in the reward.
  相似文献   
73.
Foliar application of gibberellic acid greatly enhanced theformation of secondary capitula. The proportion of primary capitulashowing this feature increased from 6% in the controls to 28,58, and 54% at 100, 250, and 500 parts 10–6 GA3, respectively.Secondary capitula were initiated either along the peripheryor in the centre of the receptacle or from both; their totalnumbers for 15 plants per treatment were 53, 215, 660, and 404in response to 0, 100, 250, and 500 parts 10–6 GA3, respectively.Secondary capitula were smaller and had fewer disc florets andfruits, particularly of the ‘wingless and small’type. Tertiary capitula, not observed in nature, formed on 2.72and 3.21% of the secondary capitula on plants sprayed with 250and 500 parts 10–6 GA3.The formation of a secondary inflorescencemeristem in treated plants in place of a floret primordium canbe detected histologically early in its development, and itspattern of development resembles that of the primary capitulum.  相似文献   
74.
Abstract The optimal number of mating partners for females rarely coincides with that for males, leading to sexual conflict over mating frequency. In the bruchid beetle Callosobruchus maculatus, the fitness consequences to females of engaging in multiple copulations are complex, with studies demonstrating both costs and benefits to multiple mating. However, females kept continuously with males have a lower lifetime egg production compared with females mated only once and then isolated from males. This reduction in fitness may be a result of damage caused by male genitalia, which bear spines that puncture the female’s reproductive tract, and/or toxic elements in the ejaculate. However, male harassment rather than costs of matings themselves could also explain the results. In the present study, the fitness costs of male harassment for female C. maculatus are estimated. The natural refractory period of females immediately after their first mating is used to separate the cost of harassment from the cost of mating. Male harassment results in females laying fewer eggs and this results in a tendency to produce fewer offspring. The results are discussed in the context of mate choice and sexual selection.  相似文献   
75.
Iberus gualtieranus is a species complex of land snails that is endemic to the Iberian Peninsula. The species taxonomy of the group is based merely on the basis of shell morphology, but validity of the existing taxonomy is uncertain. Using mitochondrial DNA (mtDNA) data (cytochrome oxidase I and 16S rRNA sequences) we were able to validate the observed phylogenetic taxa within the I. gualtieranus s.l. complex by means of the analysis of specimens of the different morphospecies, together with the study of topotypes. Strong incongruences were obtained between morphology and molecular data. The Iberus alonensis morphospecies comprised several genetically divergent but morphologically cryptic lineages. Considering (1) the allopatric distribution of the operational taxonomic units (OTUs), (2) the morphological differentiation, (3) the possible occurrence of hybridization among the different lineages, and (4) the strong differentiation of the mtDNA phylogroups, we suggest the main lineages obtained, for the time being, may be treated as evolutionary species. The robust phylogenetic reconstruction obtained allows us to consider I. alonensis s.s., Iberus campesinus, Iberus carthaginiensis, and Iberus gualtieranus s.s. as valid species. Two additional unnominated taxa of the alonensis shell type have also been identified. Further subdivisions are also considered, including Iberus gualtieranus mariae and Iberus gualtieranus ornatissimus. © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society, 2008, 154 , 722–737.  相似文献   
76.
Phenology, pollination biology and breeding system were investigated in three populations of Acacia senegal located in Delhi and Rajasthan. Flowers emit a mild fragrance and produce a minute quantity of nectar. The stigma is wet non-papillate, cup-shaped and generally accommodates one polyad with 16 pollen grains. The style is solid. The mass effect created by the brush type of blossoms attracts a wide variety of insects, of which the giant Asian honeybee, Apis dorsata , is the effective pollinator. Manual in vivo pollination studies have shown that the species is self-incompatible. Self-incompatibility appears to operate inside the embryo sac. Under natural conditions fruit set is as low as 0.36%. Insufficient pollination is the main cause of low fruit set. Manual xenogamous pollinations substantially improve fruit set to 30%  相似文献   
77.
Above forest canopies, eddy covariance (EC) measurements of mass (CO2, H2O vapor) and energy exchange, assumed to represent ecosystem fluxes, are commonly made at one point in the roughness sublayer (RSL). A spatial variability experiment, in which EC measurements were made from six towers within the RSL in a uniform pine plantation, quantified large and dynamic spatial variation in fluxes. The spatial coefficient of variation (CV) of the scalar fluxes decreased with increasing integration time, stabilizing at a minimum that was independent of further lengthening the averaging period (hereafter a ‘stable minimum’). For all three fluxes, the stable minimum (CV=9–11%) was reached at averaging times (τp) of 6–7 h during daytime, but higher stable minima (CV=46–158%) were reached at longer τp (>12 h) during nighttime. To the extent that decreasing CV of EC fluxes reflects reduction in micrometeorological sampling errors, half of the observed variability at τp=30 min is attributed to sampling errors. The remaining half (indicated by the stable minimum CV) is attributed to underlying variability in ecosystem structural properties, as determined by leaf area index, and perhaps associated ecosystem activity attributes. We further assessed the spatial variability estimates in the context of uncertainty in annual net ecosystem exchange (NEE). First, we adjusted annual NEE values obtained at our long‐term observation tower to account for the difference between this tower and the mean of all towers from this experiment; this increased NEE by up to 55 g C m?2 yr?1. Second, we combined uncertainty from gap filling and instrument error with uncertainty because of spatial variability, producing an estimate of variability in annual NEE ranging from 79 to 127 g C m?2 yr?1. This analysis demonstrated that even in such a uniform pine plantation, in some years spatial variability can contribute ~50% of the uncertainty in annual NEE estimates.  相似文献   
78.
1. Excretion of nitrogen (N) and phosphorus (P) is a direct and potentially important role for aquatic consumers in nutrient cycling that has recently garnered increased attention. The ecosystem‐level significance of excreted nutrients depends on a suite of abiotic and biotic factors, however, and few studies have coupled measurements of excretion with consideration of its likely importance for whole‐system nutrient fluxes. 2. We measured rates and ratios of N and P excretion by shrimps (Xiphocaris elongata and Atya spp.) in two tropical streams that differed strongly in shrimp biomass because a waterfall excluded predatory fish from one site. We also made measurements of shrimp and basal resource carbon (C), N and P content and estimated shrimp densities and ecosystem‐level N and P excretion and uptake. Finally, we used a 3‐year record of discharge and NH4‐N concentration in the high‐biomass stream to estimate temporal variation in the distance required for excretion to turn over the ambient NH4‐N pool. 3. Per cent C, N, and P body content of Xiphocaris was significantly higher than that of Atya. Only per cent P body content showed significant negative relationships with body mass. C:N of Atya increased significantly with body mass and was higher than that of Xiphocaris. N : P of Xiphocaris was significantly higher than that of Atya. 4. Excretion rates ranged from 0.16–3.80 μmol NH4‐N shrimp?1 h?1, 0.23–5.76 μmol total dissolved nitrogen (TDN) shrimp?1 h?1 and 0.002–0.186 μmol total dissolved phosphorus (TDP) shrimp?1 h?1. Body size was generally a strong predictor of excretion rates in both taxa, differing between Xiphocaris and Atya for TDP but not NH4‐N and TDN. Excretion rates showed statistically significant but weak relationships with body content stoichiometry. 5. Large between‐stream differences in shrimp biomass drove differences in total excretion by the two shrimp communities (22.3 versus 0.20 μmol NH4‐N m?2 h?1, 37.5 versus 0.26 μmol TDN m?2 h?1 and 1.1 versus 0.015 μmol TDP m?2 h?1), equivalent to 21% and 0.5% of NH4‐N uptake and 5% and <0.1% of P uptake measured in the high‐ and low‐biomass stream, respectively. Distances required for excretion to turn over the ambient NH4‐N pool varied more than a hundredfold over the 3‐year record in the high‐shrimp stream, driven by variability in discharge and NH4‐N concentration. 6. Our results underscore the importance of both biotic and abiotic factors in controlling consumer excretion and its significance for nutrient cycling in aquatic ecosystems. Differences in community‐level excretion rates were related to spatial patterns in shrimp biomass dictated by geomorphology and the presence of predators. Abiotic factors also had important effects through temporal patterns in discharge and nutrient concentrations. Future excretion studies that focus on nutrient cycling should consider both biotic and abiotic factors in assessing the significance of consumer excretion in aquatic ecosystems.  相似文献   
79.
Efforts to characterize carbon (C) cycling among atmosphere, forest canopy, and soil C pools are hindered by poorly quantified fine root dynamics. We characterized the influence of free‐air‐CO2‐enrichment (ambient +200 ppm) on fine roots for a period of 6 years (Autumn 1998 through Autumn 2004) in an 18‐year‐old loblolly pine (Pinus taeda) plantation near Durham, NC, USA using minirhizotrons. Root production and mortality were synchronous processes that peaked most years during spring and early summer. Seasonality of fine root production and mortality was not influenced by atmospheric CO2 availability. Averaged over all 6 years of the study, CO2 enrichment increased average fine root standing crop (+23%), annual root length production (+25%), and annual root length mortality (+36%). Larger increase in mortality compared with production with CO2 enrichment is explained by shorter average fine root lifespans in elevated plots (500 days) compared with controls (574 days). The effects of CO2‐enrichment on fine root proliferation tended to shift from shallow (0–15 cm) to deeper soil depths (15–30) with increasing duration of the study. Diameters of fine roots were initially increased by CO2‐enrichment but this effect diminished over time. Averaged over 6 years, annual fine root NPP was estimated to be 163 g dw m?2 yr?1 in CO2‐enriched plots and 130 g dw m?2 yr?1 in control plots (P= 0.13) corresponding to an average annual additional input of fine root biomass to soil of 33 g m?2 yr?1 in CO2‐enriched plots. A lack of consistent CO2× year effects suggest that the positive effects of CO2 enrichment on fine root growth persisted 6 years following minirhizotron tube installation (8 years following initiation of the CO2 fumigation). Although CO2‐enrichment contributed to extra flow of C into soil in this experiment, the magnitude of the effect was small suggesting only modest potential for fine root processes to directly contribute to soil C storage in south‐eastern pine forests.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号