首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52735篇
  免费   17245篇
  国内免费   2614篇
  2024年   46篇
  2023年   379篇
  2022年   598篇
  2021年   1825篇
  2020年   2989篇
  2019年   4807篇
  2018年   4885篇
  2017年   4846篇
  2016年   5199篇
  2015年   5555篇
  2014年   5587篇
  2013年   6148篇
  2012年   4224篇
  2011年   3706篇
  2010年   4435篇
  2009年   3109篇
  2008年   2250篇
  2007年   1690篇
  2006年   1467篇
  2005年   1372篇
  2004年   1168篇
  2003年   1099篇
  2002年   1024篇
  2001年   814篇
  2000年   691篇
  1999年   594篇
  1998年   288篇
  1997年   273篇
  1996年   249篇
  1995年   197篇
  1994年   153篇
  1993年   118篇
  1992年   150篇
  1991年   118篇
  1990年   87篇
  1989年   65篇
  1988年   59篇
  1987年   64篇
  1986年   47篇
  1985年   63篇
  1984年   18篇
  1983年   22篇
  1982年   16篇
  1981年   17篇
  1980年   8篇
  1979年   9篇
  1978年   8篇
  1977年   6篇
  1974年   6篇
  1969年   11篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
111.
The central regulator of adipogenesis, PPARγ, is a nuclear receptor that is linked to obesity and metabolic diseases. Here we report that MKRN1 is an E3 ligase of PPARγ that induces its ubiquitination, followed by proteasome-dependent degradation. Furthermore, we identified two lysine sites at 184 and 185 that appear to be targeted for ubiquitination by MKRN1. Stable overexpression of MKRN1 reduced PPARγ protein levels and suppressed adipocyte differentiation in 3T3-L1 and C3H10T1/2 cells. In contrast, MKRN1 depletion stimulated adipocyte differentiation in these cells. Finally, MKRN1 knockout MEFs showed an increased capacity for adipocyte differentiation compared with wild-type MEFs, with a concomitant increase of PPARγ and adipogenic markers. Together, these data indicate that MKRN1 is an elusive PPARγ E3 ligase that targets PPARγ for proteasomal degradation by ubiquitin-dependent pathways, and further depict MKRN1 as a novel target for diseases involving PPARγ.  相似文献   
112.
113.
114.
115.
Oceanic islands are productive habitats for generating new species and high endemism, which is primarily due to their geographical isolation, smaller population sizes and local adaptation. However, the short divergence times and subtle morphological or ecological divergence of insular organisms may obscure species identity, so the cryptic endemism on islands may be underestimated. The endangered weevil Pachyrhynchus sonani Kôno (Coleoptera: Curculionidae: Entiminae: Pachyrhynchini) is endemic to Green Island and Orchid Island of the Taiwan‐Luzon Archipelago and displays widespread variation in coloration and host range, thus raising questions regarding its species boundaries and degree of cryptic diversity. We tested the species boundaries of P. sonani using an integrated approach that combined morphological (body size and shape, genital shape, coloration and cuticular scale), genetic (four genes and restriction site‐associated DNA sequencing, RAD‐seq) and ecological (host range and distribution) diversity. The results indicated that all the morphological datasets for male P. sonani, except for the colour spectrum, reveal overlapping but statistically significant differences between islands. In contrast, the morphology of the female P. sonani showed minimum divergence between island populations. The populations of P. sonani on the two islands were significantly different in their host ranges, and the genetic clustering and phylogenies of P. sonani established two valid evolutionary species. Integrated species delimitation combining morphological, molecular and ecological characters supported two distinct species of P. sonani from Green Island and Orchid Island. The Green Island population was described as P. jitanasaius sp.n. Chen & Lin, and it is recommended that its threatened conservation status be recognized. Our findings suggest that the inter‐island speciation of endemic organisms inhabiting both islands may be more common than previously thought, and they highlight the possibility that the cryptic diversity of small oceanic islands may still be largely underestimated.  相似文献   
116.
117.
Intermittent tongue, lip and cheek forces influence precise tooth position, so we here examine the possibility that tissue remodelling driven by functional bite-force-induced jaw-strain accounts for tooth eruption. Notably, although a separate true ‘eruptive force’ is widely assumed, there is little direct evidence for such a force. We constructed a three dimensional finite element model from axial computerized tomography of an 8 year old child mandible containing 12 erupted and 8 unerupted teeth. Tissues modelled included: cortical bone, cancellous bone, soft tissue dental follicle, periodontal ligament, enamel, dentine, pulp and articular cartilage. Strain and hydrostatic stress during incisive and unilateral molar bite force were modelled, with force applied via medial and lateral pterygoid, temporalis, masseter and digastric muscles. Strain was maximal in the soft tissue follicle as opposed to surrounding bone, consistent with follicle as an effective mechanosensor. Initial numerical analysis of dental follicle soft tissue overlying crowns and beneath the roots of unerupted teeth was of volume and hydrostatic stress. To numerically evaluate biological significance of differing hydrostatic stress levels normalized for variable finite element volume, ‘biological response units’ in Nmm were defined and calculated by multiplication of hydrostatic stress and volume for each finite element. Graphical representations revealed similar overall responses for individual teeth regardless if incisive or right molar bite force was studied. There was general compression in the soft tissues over crowns of most unerupted teeth, and general tension in the soft tissues beneath roots. Not conforming to this pattern were the unerupted second molars, which do not erupt at this developmental stage. Data support a new hypothesis for tooth eruption, in which the follicular soft tissues detect bite-force-induced bone-strain, and direct bone remodelling at the inner surface of the surrounding bony crypt, with the effect of enabling tooth eruption into the mouth.  相似文献   
118.
In addition to a role for de novo protein synthesis in apoptosis we have previously shown that activation of a protein phosphatase or loss of activity of a kinase is also important in radiation-induced apoptosis in human cells [Baxter, and Lavin (1992): J Immunol 148:149–1954]. We show here that some inhibitors of protein kinases exacerbate radiation-induced apoptosis in the human cell line BM13674. The specific protein kinase A inhibitor isoquinoline sulfonamide (20 μM) gave rise to significantly increased levels of apoptosis at 2–6 h postirradiation compared to values after radiation exposure only. The same concentration of isoquinolinesulfonamide, which was effective in increasing apoptosis, reduced activity markedly. A 66% inhibition of cyclic AMP-dependent protein kinase A activity occurred in unirradiated cells at this concentration of H89 and activity was reduced to 58% in irradiated cells. Calphostin C, a specific inhibitor of protein kinase C, at a concentration of 0.1 μM, which caused 68% inhibition of enzyme activity in irradiated cells, failed to enhance the level of radiation-induced apoptosis. Other kinase inhibitors did not lead to an additional increase in apoptosis over and above that observed after irradiation. The results obtained here provide further support for an important role for modification of existing proteins during radiation-induced apoptosis.  相似文献   
119.
During the Audouin's Gull's breeding season at the Ebro Delta in 1993, 24 fresh eggs from eight three-egg clutches (modal clutch-size) were collected at the peak of the laying period. Eggs were processed to obtain formalin-fixed yolks, which were halved and stained using the potassium dichromate method. Digitized images of the yolks were examined to assess the daily rates of yolk deposition. We used these data in combination with egg compositional analysis to build a model of energy demands during the formation of an average clutch in Audouin's Gull. To show how the different parameters of clutch formation affect the daily energy investment peak, we performed a simulation analysis in which the rapid yolk development (RYD) period, the follicle triggering interval (FTI), the laying interval (LI) and the albumen synthesis period (ASP) were allowed to vary simultaneously. In our sample, the mean RYD period was seven days with a range from six to eight days. There were no significant differences in yolk volume among eggs in a clutch, but albumen volume was significantly smaller in third eggs. According to our model the albumen synthesis of the a-egg coincides with the energy demand peak for clutch formation. This peak represents an increase by ca. 42% in female energy requirements. Values obtained from the simulation analysis showed that only the ASP of the a-egg and the RYD durations of the second and third follicles produced noticeable reductions in peak energy investment. We predict that in gulls, whose laying intervals seem to be kept constant, significant increases of the durations of the RYD periods of second and third eggs, or even significant reductions of yolk size of these eggs, may operate simultaneously to match the energy demands during clutch formation to the prevailing food conditions.  相似文献   
120.
Understanding drivers of biodiversity patterns is of prime importance in this era of severe environmental crisis. More diverse plant communities have been postulated to represent a larger functional trait‐space, more likely to sustain a diverse assembly of herbivore species. Here, we expand this hypothesis to integrate environmental, functional and phylogenetic variation of plant communities as factors explaining the diversity of lepidopteran assemblages along elevation gradients in the Swiss Western Alps. According to expectations, we found that the association between butterflies and their host plants is highly phylogenetically structured. Multiple regression analyses showed the combined effect of climate, functional traits and phylogenetic diversity in structuring butterfly communities. Furthermore, we provide the first evidence that plant phylogenetic beta diversity is the major driver explaining butterfly phylogenetic beta diversity. Along ecological gradients, the bottom up control of herbivore diversity is thus driven by phylogenetically structured turnover of plant traits as well as environmental variables.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号