首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13514篇
  免费   1125篇
  国内免费   1547篇
  2024年   35篇
  2023年   180篇
  2022年   375篇
  2021年   785篇
  2020年   605篇
  2019年   739篇
  2018年   586篇
  2017年   445篇
  2016年   598篇
  2015年   863篇
  2014年   1030篇
  2013年   1107篇
  2012年   1321篇
  2011年   1135篇
  2010年   720篇
  2009年   673篇
  2008年   739篇
  2007年   647篇
  2006年   532篇
  2005年   439篇
  2004年   417篇
  2003年   381篇
  2002年   314篇
  2001年   236篇
  2000年   199篇
  1999年   182篇
  1998年   115篇
  1997年   95篇
  1996年   82篇
  1995年   85篇
  1994年   86篇
  1993年   60篇
  1992年   60篇
  1991年   57篇
  1990年   46篇
  1989年   36篇
  1988年   22篇
  1987年   17篇
  1986年   14篇
  1985年   16篇
  1984年   7篇
  1983年   17篇
  1982年   8篇
  1981年   6篇
  1980年   7篇
  1973年   6篇
  1972年   11篇
  1971年   7篇
  1970年   7篇
  1968年   7篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
81.
82.
Zanthoxylum armatum and Zanthoxylum bungeanum, known as ‘Chinese pepper’, are distinguished by their extraordinary complex genomes, phenotypic innovation of adaptive evolution and species-special metabolites. Here, we report reference-grade genomes of Z. armatum and Z. bungeanum. Using high coverage sequence data and comprehensive assembly strategies, we derived 66 pseudochromosomes comprising 33 homologous phased groups of two subgenomes, including autotetraploid Z. armatum. The genomic rearrangements and two whole-genome duplications created large (~4.5 Gb) complex genomes with a high ratio of repetitive sequences (>82%) and high chromosome number (2n = 4x = 132). Further analysis of the high-quality genomes shed lights on the genomic basis of involutional reproduction, allomones biosynthesis and adaptive evolution in Chinese pepper, revealing a high consistent relationship between genomic evolution, environmental factors and phenotypic innovation. Our study provides genomic resources and new insights for investigating diversification and phenotypic innovation in Chinese pepper, with broader implications for the protection of plants under severe environmental changes.  相似文献   
83.
Grain size and filling are two key determinants of grain thousand-kernel weight (TKW) and crop yield, therefore they have undergone strong selection since cereal was domesticated. Genetic dissection of the two traits will improve yield potential in crops. A quantitative trait locus significantly associated with wheat grain TKW was detected on chromosome 7AS flanked by a simple sequence repeat marker of Wmc17 in Chinese wheat 262 mini-core collection by genome-wide association study. Combined with the bulked segregant RNA-sequencing (BSR-seq) analysis of an F2 genetic segregation population with extremely different TKW traits, a candidate trehalose-6-phosphate phosphatase gene located at 135.0 Mb (CS V1.0), designated as TaTPP-7A, was identified. This gene was specifically expressed in developing grains and strongly influenced grain filling and size. Overexpression (OE) of TaTPP-7A in wheat enhanced grain TKW and wheat yield greatly. Detailed analysis revealed that OE of TaTPP-7A significantly increased the expression levels of starch synthesis- and senescence-related genes involved in abscisic acid (ABA) and ethylene pathways. Moreover, most of the sucrose metabolism and starch regulation-related genes were potentially regulated by SnRK1. In addition, TaTPP-7A is a crucial domestication- and breeding-targeted gene and it feedback regulates sucrose lysis, flux, and utilization in the grain endosperm mainly through the T6P-SnRK1 pathway and sugar–ABA interaction. Thus, we confirmed the T6P signalling pathway as the central regulatory system for sucrose allocation and source–sink interactions in wheat grains and propose that the trehalose pathway components have great potential to increase yields in cereal crops.  相似文献   
84.
Exosomal microRNA (miRNA) exerts potential roles in non-small-cell lung cancer (NSCLC). The current study elucidated the role of miR-30b-5p shuttled by bone marrow mesenchymal stem cells (BMSCs)-derived exosomes in treating NSCLC. Bioinformatics analysis was performed with NSCLC-related miRNA microarray GSE169587 and mRNA data GSE74706 obtained for collection of the differentially expressed miRNAs and mRNAs. The relationship between miR-30b-5p and EZH2 was predicted and confirmed. Exosomes were isolated from BMSCs and identified. BMSCs-derived exosomes overexpressing miR-30b-5p were used to establish subcutaneous tumorigenesis models to study the effects of miR-30b-5p, EZH2 and PI3K/AKT signalling pathway on tumour growth. A total of 86 BMSC-exo-miRNAs were differentially expressed in NSCLC. Bioinfomatics analysis found that BMSC-exo-miR-30b-5p could regulate NSCLC progression by targeting EZH2, which was verified by in vitro cell experiments. Besides, the target genes of miR-30b-5p were enriched in PI3K/AKT signalling pathway. Animal experiments validated that BMSC-exo-miR-30b-5p promoted NSCLC cell apoptosis and prevented tumorigenesis in nude mice via EZH2/PI3K/AKT axis. Collectively, the inhibitory role of BMSC-derived exosomes-loaded miR-30b-5p in NSCLC was achieved through blocking the EZH2/PI3K/AKT axis.  相似文献   
85.
Polyethylene terephthalate (PET) hydrolase enzymes show promise for enzymatic PET degradation and green recycling of single-use PET vessels representing a major source of global pollution. Their full potential can be unlocked with enzyme engineering to render activities on recalcitrant PET substrates commensurate with cost-effective recycling at scale. Thermostability is a highly desirable property in industrial enzymes, often imparting increased robustness and significantly reducing quantities required. To date, most engineered PET hydrolases show improved thermostability over their parental enzymes. Here, we report engineered thermostable variants of Ideonella sakaiensis PET hydrolase enzyme (IsPETase) developed using two scaffolding strategies. The first employed SpyCatcher-SpyTag technology to covalently cyclize IsPETase, resulting in increased thermostability that was concomitant with reduced turnover of PET substrates compared to native IsPETase. The second approach using a GFP-nanobody fusion protein (vGFP) as a scaffold yielded a construct with a melting temperature of 80°C. This was further increased to 85°C when a thermostable PETase variant (FAST PETase) was scaffolded into vGFP, the highest reported so far for an engineered PET hydrolase derived from IsPETase. Thermostability enhancement using the vGFP scaffold did not compromise activity on PET compared to IsPETase. These contrasting results highlight potential topological and dynamic constraints imposed by scaffold choice as determinants of enzyme activity.  相似文献   
86.
Most studies comparing biodiversity between natural and human-modified landscapes focus on patterns in species occurrence or abundance, but do not consider how different habitat types meet species' breeding requirements. Organisms that use or nest in tree cavities may be especially threatened by habitat conversion due to the loss of their nesting sites. Although cavity-nesting bird diversity is highest in the tropics, little is known about how tropical birds use cavities, how agriculture affects their reproductive biology, and how effective nest boxes could be as a conservation strategy in tropical agriculture. Here, we explored how habitat conversion from tropical forests to pasture affects the abundance, nesting habitat availability, and nest success of cavity-nesting birds in Northwest Ecuador. We conducted bird surveys and measured natural cavity availability and use in forest and agriculture. We also added artificial nest boxes to forest and agriculture to see whether cavity limitation in agriculture would elicit higher use of artificial nest boxes. We found evidence of cavity limitation in agriculture—there were many more natural cavities in forest than in agriculture, as well as more avian use of nest boxes placed in agriculture as compared to forest. Our results suggest that it is important to retain remnant trees in tropical agriculture to provide critical nesting habitat for birds. In addition, adding nest boxes to tropical agricultural systems could be a good conservation strategy for certain species, including insectivores that could provide pest-control services to farmers. Abstract in Spanish is available with online material.  相似文献   
87.
本研究于2021年3~9月,采用目标观察和全事件记录法,对广西防城港市钦州湾八路水湿地黑翅长脚鹬(Himantopus himantopus)的繁殖习性进行全过程观察记录。黑翅长脚鹬的栖息生境主要在盐田、虾塘和鱼塘,而巢主要分布在盐田生境。共发现39巢,雌雄共同营巢,按照主要巢材将其巢分为干草巢、碎石巢、泥皮巢和牛毛毡草巢4种;巢材包括禾本科(Gramineae)和莎草科(Cyperaceae)植物以及碎石、贝壳等;巢外径为(23.3±10.7)cm,巢内径为(11.2±1.9)cm,巢深为(1.6±0.5)cm,巢高为(6.5±4.3)cm(n=39);筑巢需(3±2)d(n=6)。窝卵数2~4枚,1~2 d产1枚卵,7 d内产完满窝卵(n=6)。雌雄均参与孵卵,雄性孵卵时间比雌性长,但二者差异不显著(P> 0.05),雄性(8 550±245.9)min,雌性(7 530±263.3)min,孵卵期为(25±2)d(n=6)。育雏期(26±3)d(n=6),雌雄轮流育雏,育雏前、中期(雏鸟1~20d日龄),雌性育雏时间比雄性长,是雄性的2倍,育雏后期(雏鸟大于20 d日龄),...  相似文献   
88.
The localization of mRNA encoding preproatrial natriuretic peptide (ANP) was investigated in cultured human umbilical vein endothelial cells (HUVEC) and tissue preparations of umbilical vein and artery. The techniques used were in situ hybridization and in situ hybridization combined with immunocytochemistry, using 32P-radiolabelled and non-radioactive digoxigenin labelled complementary RNA probes. Human ANP mRNAs are mainly localized in the endothelial cells of the umbilical vein and, to a lesser extent, in the endothelial cells of the umbilical artery. The autoradiographic labelling and the intensity of digoxigenin staining were significantly reduced by treatment with RNase before in situ hybridization. This study provides unequivocal evidence for the expression of the ANP gene in the endothelial cells of human umbilical vessels, confirming that these endothelial cells have the ability to synthesize this peptide. The functional significance of the presence of the ANP mRNA in the endothelial cells of human umbilical vessels is discussed.  相似文献   
89.
Li  Zhiyuan  Jiang  Hong  Liang  Zhiguo  Wang  Zepeng  Jiang  Xiumei  Qin  Yong 《Journal of Plant Growth Regulation》2023,42(2):922-934

This study examined the effects of nitrogen (N) fertilizer reduction on the carbon (C) metabolism and yield of Coreopsis tinctoria. A two-year (2020–2021) hydroponic experiment was conducted in accordance with a randomized complete group design with five N levels [0.875 mM Ca(NO3)2 (N1), 1.750 mM Ca(NO3)2 (N2), 3.500 mM Ca(NO3)2 (N3), 7.000 mM Ca(NO3)2 (N4), and 14.000 mM Ca(NO3)2 (N5)] and three replications. The results showed that low N significantly affected the functional leaf weight, C metabolism, and flower bud (or flower) numbers of C. tinctoria at harvest. Lower-N levels, especially those of the N2 treatment, significantly increased Rubisco, sucrose synthase (SS), sucrose phosphate synthase (SPS), soluble acid invertase (SAI), glucose 6-phosphate dehydrogenase (G6PDH), and 6-phosphogluconate dehydrogenase (6PGDH) activity and maintained the flower number of C. tinctoria. In addition, the balance of carbohydrates (sucrose, starch, glucose, and fructose) and ATP contents was more efficiently maintained under relatively low-N levels. These findings might suggest that reduced application of N fertilizer affects the C metabolism of leaves and maintains the number of flowers in Coreopsis tinctoria. Applying relatively low-N fertilizer levels is also a promising cultivation strategy for C. tinctoria.

  相似文献   
90.
鸭蛋黄颜色的生态遗传分析   总被引:1,自引:0,他引:1  
1 引言 蛋黄颜色作为衡量禽蛋质量的主要经济性状之一,愈来愈受到消费者的关注,家鸡中这种性状的遗传力很低。Farnsworth等(1955)发现其遗传力为0.15,Torges报道其仅为0.05,Vanchev等(1980)估测母系遗传力为0.18,父系为0.47。因此,决定蛋黄色度主要是饲料因素,饲料中的氧化类胡萝卜素(叶黄素和玉米黄质)为蛋黄提供色素来源,能大量提供有效类胡萝卜素的饲料有藻类、紫花苜蓿、黄(白)玉米、大豆等植物,甲壳类动物、微生物(醇母)及类胡萝卜素制剂Mackey分别用墨角藻(Fucus vesiculosus)、齿缘墨角藻  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号