首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110917篇
  免费   1676篇
  国内免费   2081篇
  2024年   26篇
  2023年   250篇
  2022年   262篇
  2021年   964篇
  2020年   610篇
  2019年   853篇
  2018年   12456篇
  2017年   11084篇
  2016年   8168篇
  2015年   1729篇
  2014年   1661篇
  2013年   1759篇
  2012年   5828篇
  2011年   14200篇
  2010年   12853篇
  2009年   9045篇
  2008年   10743篇
  2007年   12247篇
  2006年   1040篇
  2005年   1176篇
  2004年   1479篇
  2003年   1527篇
  2002年   1206篇
  2001年   595篇
  2000年   455篇
  1999年   312篇
  1998年   171篇
  1997年   179篇
  1996年   164篇
  1995年   117篇
  1994年   90篇
  1993年   99篇
  1992年   130篇
  1991年   119篇
  1990年   75篇
  1989年   59篇
  1988年   60篇
  1987年   56篇
  1986年   38篇
  1985年   51篇
  1984年   15篇
  1983年   35篇
  1982年   11篇
  1981年   11篇
  1972年   248篇
  1971年   277篇
  1969年   11篇
  1965年   14篇
  1962年   25篇
  1944年   12篇
排序方式: 共有10000条查询结果,搜索用时 765 毫秒
91.
The removal of polycyclic aromatic hydrocarbons by membrane bioreactor (MBR) under aerobic conditions had been studied using naphthalene (NAP) and phenanthrene (PHE) as model compounds. Three MBRs with submerged ultra-filtration hollow fiber membranes were operated applying different operational conditions during 6.5 months. Complete NAP and PHE removal was obtained applying loads of 7 gNAP kgTSS?1 day?1 and 0.5 gPHE kgTSS?1 day?1, while the organic loading rate was adjusted to 0.26 kgCOD kgTSS?1 day?1, with the biomass concentration being 6000 mgTSS L?1, the hydraulic retention time (HRT) 8 h and the solids retention time (SRT) 30 days. Load increases, as well as HRT and SRT reductions, affected the NAP and PHE removals. Biodegradation was found to be the major NAP and PHE removal mechanism. There was no NAP accumulation in the biomass. Low PHE quantities remain sorbed in the biomass and the contribution of the sorption in the removal of this compound was estimated to be less than 0.01 %. The volatilization does not contribute to the PHE removal in MBRs, but the contribution of NAP volatilization can reach up to 0.6 % when HRT of 8 h is applied.  相似文献   
92.
Abstract We present a regional fuel load model (1 km2 spatial resolution) applied in the southern African savanna region. The model is based on a patch-scale production efficiency model (PEM) scaled up to the regional level using empirical relationships between patch-scale behavior and multi-source remote sensing data (spatio-temporal variability of vegetation and climatic variables). The model requires the spatial distribution of woody vegetation cover, which is used to determine separate respiration rates for tree and grass. Net primary production, grass and tree leaf death, and herbivory are also taken into account in this mechanistic modeling approach. The fuel load model has been calibrated and validated from independent measurements taken from savanna vegetation in Africa southward from the equator. A sensitivity analysis on the effect of climate variables (incoming radiation, air temperature, and precipitation) has been conducted to demonstrate the strong role that water availability has in determining productivity and subsequent fuel load over the southern African region. The model performance has been tested in four different areas representative of a regional increasing rainfall gradient—Etosha National Park, Namibia, Mongu and Kasama, Zambia, as well as in Kruger National Park, South Africa. Within each area, we analyze model output from three different magnitudes of canopy coverage (<5, 30, and 50%). We find that fuel load ranges predicted by the model are globally in agreement with field measurements for the same year. High rainfall sustains green herbaceous production late in the dry season and delays tree leaf litter production. Effect of water on production varies across the rainfall gradient with delayed start of green material production in more arid regions.  相似文献   
93.
The heritability of eating behavior and body weight–related traits in Asian populations has not been reported. The purpose of this study was to estimate the heritability of eating behavior and the body weight–related traits of current weight and self‐reported past weight among twins and their families. Study subjects were 2,144 Korean, adult, same‐sex twins and their families at the ages between 20 and 65 years (443 monozygotic (MZ) and 124 dizygotic (DZ) twin pairs, and 1,010 individuals of their family). The Dutch Eating Behavior Questionnaire (DEBQ) was used to assess three eating behavior subscales measuring restraint, emotional eating, and external eating. A variance component approach was used to estimate heritability. After consideration of shared environmental effects and adjustment for age and sex effects, the heritability estimates ± s.e. among twins and their family members were 0.31 ± 0.036 for restraint, 0.25 ± 0.098 for emotional eating, 0.25 ± 0.060 for external eating, 0.77 ± 0.032 for measured current body weight, and 0.70 ± 0.051 for self‐reported weight at 20 years old. The three DEBQ subscales were associated with all weight related traits after adjustment for age and sex. These results suggest eating behaviors and weight‐related traits have a genetic influence, and eating behaviors are associated with obesity indexes. Our findings from Korean twin family were similar to those reported in Western populations.  相似文献   
94.
95.
96.
An initial proteomic analysis of the cuprizone mouse model to characterise the breadth of toxicity by assessing cortex, skeletal muscle, spleen and peripheral blood mononuclear cells. Cuprizone treated vs. control mice for an initial characterisation. Select tissues from each group were pooled, analysed in triplicate using two-dimensional gel electrophoresis (2DE) and deep imaging and altered protein species identified using liquid chromatography tandem mass spectrometry (LC/MS/MS). Forty-three proteins were found to be uniquely detectable or undetectable in the cuprizone treatment group across the tissues analysed. Protein species identified in the cortex may potentially be linked to axonal damage in this model, and those in the spleen and peripheral blood mononuclear cells to the minimal peripheral immune cell infiltration into the central nervous system during cuprizone mediated demyelination. Primary oligodendrocytosis has been observed in type III lesions in multiple sclerosis. However, the underlying mechanisms are poorly understood. Cuprizone treatment results in oligodendrocyte apoptosis and secondary demyelination. This initial analysis identified proteins likely related to axonal damage; these may link primary oligodendrocytosis and secondary axonal damage. Furthermore, this appears to be the first study of the cuprizone model to also identify alterations in the proteomes of skeletal muscle, spleen and peripheral blood mononuclear cells. Notably, protein disulphide isomerase was not detected in the cuprizone cohort; its absence has been linked to reduced major histocompatibility class I assembly and reduced antigen presentation. Overall, the results suggest that, like experimental autoimmune encephalomyelitis, results from the standard cuprizone model should be carefully considered relative to clinical multiple sclerosis.  相似文献   
97.
The role of invariant water molecules in the activity of plant cysteine protease is ubiquitous in nature. On analysing the 11 different Protein DataBank (PDB) structures of plant thiol proteases, the two invariant water molecules W1 and W2 (W220 and W222 in the template 1PPN structure) were observed to form H-bonds with the Ob atom of Asn 175. Extensive energy minimization and molecular dynamics simulation studies up to 2 ns on all the PDB and solvated structures clearly revealed the involvement of the H-bonding association of the two water molecules in fixing the orientation of the asparagine residue of the catalytic triad. From this study, it is suggested that H-bonding of the water molecule at the W1 invariant site better stabilizes the Asn residue at the active site of the catalytic triad.  相似文献   
98.
99.
100.
Electrical stimulation of the nervous system for therapeutic purposes, such as deep brain stimulation in the treatment of Parkinson’s disease, has been used for decades. Recently, increased attention has focused on using microstimulation to restore functions as diverse as somatosensation and memory. However, how microstimulation changes the neural substrate is still not fully understood. Microstimulation may cause cortical changes that could either compete with or complement natural neural processes, and could result in neuroplastic changes rendering the region dysfunctional or even epileptic. As part of our efforts to produce neuroprosthetic devices and to further study the effects of microstimulation on the cortex, we stimulated and recorded from microelectrode arrays in the hand area of the primary somatosensory cortex (area 1) in two awake macaque monkeys. We applied a simple neuroprosthetic microstimulation protocol to a pair of electrodes in the area 1 array, using either random pulses or pulses time-locked to the recorded spiking activity of a reference neuron. This setup was replicated using a computer model of the thalamocortical system, which consisted of 1980 spiking neurons distributed among six cortical layers and two thalamic nuclei. Experimentally, we found that spike-triggered microstimulation induced cortical plasticity, as shown by increased unit-pair mutual information, while random microstimulation did not. In addition, there was an increased response to touch following spike-triggered microstimulation, along with decreased neural variability. The computer model successfully reproduced both qualitative and quantitative aspects of the experimental findings. The physiological findings of this study suggest that even simple microstimulation protocols can be used to increase somatosensory information flow.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号