首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   278篇
  免费   42篇
  2023年   2篇
  2022年   4篇
  2021年   5篇
  2020年   3篇
  2019年   5篇
  2018年   8篇
  2017年   9篇
  2016年   13篇
  2015年   8篇
  2014年   15篇
  2013年   11篇
  2012年   24篇
  2011年   14篇
  2010年   19篇
  2009年   17篇
  2008年   4篇
  2007年   13篇
  2006年   8篇
  2005年   9篇
  2004年   9篇
  2003年   15篇
  2002年   2篇
  2001年   12篇
  2000年   8篇
  1999年   4篇
  1998年   4篇
  1997年   2篇
  1996年   4篇
  1995年   5篇
  1994年   4篇
  1993年   4篇
  1992年   4篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   7篇
  1987年   7篇
  1986年   3篇
  1985年   1篇
  1984年   3篇
  1983年   4篇
  1982年   3篇
  1981年   6篇
  1980年   1篇
  1979年   2篇
  1976年   1篇
  1974年   3篇
  1972年   3篇
  1970年   2篇
  1969年   1篇
排序方式: 共有320条查询结果,搜索用时 15 毫秒
31.
32.
33.
Neisseria meningitidis lipopolysaccharide (LPS) has been identified as a major determinant of dendritic cell (DC) function. Here we report that one of a series of meningococcal mutants with defined truncations in the lacto-N-neotetraose outer core of the LPS exhibited unique strong adhesion and internalization properties towards DC. These properties were mediated by interaction of the GlcNAc(beta1-3)-Gal(beta1-4)-Glc-R oligosaccharide outer core of lgtB LPS with the dendritic-cell-specific ICAM-3 grabbing non-integrin (DC-SIGN) lectin receptor. Activation of DC-SIGN with this novel oligosaccharide ligand skewed T-cell responses driven by DC towards T helper type 1 activity. Thus, the use of lgtB LPS may provide a powerful instrument to selectively induce the desired arm of the immune response and potentially increase vaccine efficacy.  相似文献   
34.
Temporal variation in plant-soil feedback controls succession   总被引:2,自引:0,他引:2  
Soil abiotic and biotic factors play key roles in plant community dynamics. However, little is known about how soil biota influence vegetation changes over time. Here, we show that the effects of soil organisms may depend on both the successional development of ecosystems and on the successional position of the plants involved. In model systems of plants and soils from different successional stages, we observed negative plant–soil feedback for early-successional plant species, neutral feedback for mid-successional species, and positive feedback for late-successional species. The negative feedback of early-successional plants was independent of soil origin, while late-successional plants performed best in late- and worst in early-successional soil. Increased performance of the subordinate, late-successional plants resulted in enhanced plant community diversity. Observed feedback effects were more related to soil biota than to abiotic conditions. Our results show that temporal variations in plant–soil interactions profoundly contribute to plant community assemblage and ecosystem development.  相似文献   
35.
Above‐ and belowground herbivores promote plant diversity when selectively feeding on dominant plant species, but little is known about their combined effects. Using a model system, we show that neutral effects of an aboveground herbivore and positive effects of a belowground herbivore on plant diversity became profoundly negative when adding these herbivores in combination. The non‐additive effects were explained by differences in plant preference between the aboveground‐ and the belowground herbivores and their consequences for indirect interactions among plant species. Simultaneous exposure to aboveground‐ and belowground herbivores led to plant communities being dominated by a few highly abundant species. As above‐ and belowground invertebrate herbivores generally differ in their mobility and local distribution patterns, our results strongly suggest that aboveground–belowground interactions contribute to local spatial heterogeneity of diversity patterns within plant communities.  相似文献   
36.
Despite decades of research, it remains controversial whether ecological communities converge towards a common structure determined by environmental conditions irrespective of assembly history. Here, we show experimentally that the answer depends on the level of community organization considered. In a 9‐year grassland experiment, we manipulated initial plant composition on abandoned arable land and subsequently allowed natural colonization. Initial compositional variation caused plant communities to remain divergent in species identities, even though these same communities converged strongly in species traits. This contrast between species divergence and trait convergence could not be explained by dispersal limitation or community neutrality alone. Our results show that the simultaneous operation of trait‐based assembly rules and species‐level priority effects drives community assembly, making it both deterministic and historically contingent, but at different levels of community organization.  相似文献   
37.
Vos  J.  van der Putten  P.E.L. 《Plant and Soil》2001,236(2):263-273
In temperate climates with a precipitation surplus during autumn and winter, nitrogen (N) catch crops can help to reduce nitrogen losses from cropping systems by absorbing nitrogen from the soil and transfer it to a following main crop. In two field experiments the catch crop species winter rye (Secale cereale) and forage rape (Brassica napus ssp. oleifera (Metzg.) Sinsk) or oil radish (Raphanus sativus spp. oleiferus (DC.) Metzg.) were planted end of August and 3 weeks later with a non-limiting supply of N and zero-N controls. In the next spring catch crops were incorporated into the soil. In Expt 1, N transfer was measured as (i) the N uptake of a potato test crop, grown with zero and 12.5 g m–2 N applied, and (ii) the increase in soil mineral N (0–30 cm) in uncropped soil covered with polythene film. In Expt 2, N transfer was measured as the increase in soil mineral N in covered cylinders placed in uncropped soil (in situ incubation). Subsidiary laboratory incubations were performed in Expt 2. In Expt 1, the apparent recovery in potato of fertilizer N (R f) was 0.56. The recovery in potato of N mineralized from 'native' N pools other than catch crop material (R n) ranged from 0.43 to 0.51, depending on the value assumed for the depth of N extraction by potato roots. The average recovery in potato of incorporated catch crop N (R c) was 0.34. Expressed as `fertilizer N replacement factor' (F r) the latter was 0.61 (i.e. 1 kg of N in catch crop material counts for 0.61 kg fertilizer N). Under the film in Expt 1 the fraction net mineralization of incorporated catch crop N (M n) was 0.36 on August 11 and 0.43 on October 18. In Expt 2, the average value of M n was 0.31, which was lower than in Expt 1 and probably associated with the drier soil in Expt 2. In the laboratory incubations (20°C) M n showed values up to 0.54 after 84 days with the largest rates of change in mineralization occuring early after the start of the incubation. In conjunction with literature data it is concluded that cultivation of nitrogen catch crops shows promise as a means to reduce N input and N losses in temperate climates with wet winters.  相似文献   
38.
We examined the relationship between plant species diversity, productivity and the development of the soil community during early secondary succession on former arable land across Europe. We tested the hypothesis that increasing the initial plant species diversity enhances the biomass production and consequently stimulates soil microbial biomass and abundance of soil invertebrates. We performed five identical field experiments on abandoned arable land in five European countries (CZ, NL, SE, SP and UK) which allowed us to test our hypothesis in a range of climate, soil and other environmental factors that varied between the experimental sites. The initial plant diversity was altered by sowing seed mixtures of mid-successional grassland species with two or five grass species, one or five legumes and one or five forbs. The results of low and high sown diversity treatments were compared with plots that were naturally colonized by species present in the seed bank. In three out of the five field sites, there was no correlation between plant species number and plant biomass production, one site had a positive and the other a negative relation. Treatments with a high diversity seed mixture had a higher biomass than the naturally colonized plots. However, there was no significant difference between high and low sown diversity plots at four out of five sites. The three-year study did not give any evidence of a general bottom-up effect from increased plant biomass on biomass of bacteria, saprophytic fungi or abundance of microarthropods. The biomass of arbuscular mycorrhizal was negatively related to plant biomass. The abundance of nematodes increased after abandonment and was related to plant biomass at four sites. Our results support the hypothesis that plant species diversity may have idiosyncratic effects on soil communities, even though studies on a longer term could reveal time lags in the response to changes in composition and biomass production of plant communities.  相似文献   
39.
40.
Improvement of neuronal recovery in the ischemic penumbra around a brain infarct has a large potential to advance clinical recovery of patients with acute ischemic stroke. However, pathophysiological mechanisms leading to either recovery or secondary damage in the penumbra are not completely understood. We studied neuronal dynamics in a model system of the penumbra consisting of networks of cultured cortical neurons exposed to controlled levels and durations of hypoxia. Short periods of hypoxia (pO2≈20mmHg) reduced spontaneous activity, due to impeded synaptic function. After ≈6 hours, activity and connectivity partially recovered, even during continuing hypoxia. If the oxygen supply was restored within 12 hours, changes in network connectivity were completely reversible. For longer periods of hypoxia (12–30 h), activity levels initially increased, but eventually decreased and connectivity changes became partially irreversible. After ≈30 hours, all functional connections disappeared and no activity remained. Since this complete silence seemed unrelated to hypoxic depths, but always followed an extended period of low activity, we speculate that irreversible damage (at least partly) results from insufficient neuronal activation. This opens avenues for therapies to improve recovery by neuronal activation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号