首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   677篇
  免费   44篇
  国内免费   1篇
  2021年   9篇
  2020年   4篇
  2018年   12篇
  2017年   4篇
  2016年   18篇
  2015年   25篇
  2014年   28篇
  2013年   36篇
  2012年   45篇
  2011年   35篇
  2010年   26篇
  2009年   21篇
  2008年   28篇
  2007年   35篇
  2006年   35篇
  2005年   43篇
  2004年   29篇
  2003年   32篇
  2002年   23篇
  2001年   15篇
  2000年   27篇
  1999年   15篇
  1998年   5篇
  1997年   6篇
  1995年   3篇
  1994年   2篇
  1993年   9篇
  1992年   14篇
  1991年   10篇
  1990年   7篇
  1989年   7篇
  1988年   7篇
  1987年   4篇
  1986年   8篇
  1985年   10篇
  1984年   11篇
  1983年   7篇
  1982年   3篇
  1981年   4篇
  1980年   4篇
  1979年   6篇
  1978年   2篇
  1977年   9篇
  1976年   5篇
  1975年   7篇
  1974年   5篇
  1972年   2篇
  1971年   3篇
  1970年   2篇
  1951年   2篇
排序方式: 共有722条查询结果,搜索用时 15 毫秒
101.
Through targeted inactivation of the ssrA and smpB genes, we establish that the trans-translation process is necessary for normal growth, adaptation to cellular stress and virulence by the bacterial pathogen Francisella tularensis. The mutant bacteria grow slower, have reduced resistance to heat and cold shocks, and are more sensitive to oxidative stress and sublethal concentrations of antibiotics. Modifications of the tmRNA tag and use of higher-resolution mass spectrometry approaches enabled the identification of a large number of native tmRNA substrates. Of particular significance to understanding the mechanism of trans-translation, we report the discovery of an extended tmRNA tag and extensive ladder-like pattern of endogenous protein-tagging events in F. tularensis that are likely to be a universal feature of tmRNA activity in eubacteria. Furthermore, the structural integrity and the proteolytic function of the tmRNA tag are both crucial for normal growth and virulence of F. tularensis. Significantly, trans-translation mutants of F. tularensis are impaired in replication within macrophages and are avirulent in mouse models of tularemia. By exploiting these attenuated phenotypes, we find that the mutant strains provide effective immune protection in mice against lethal intradermal, intraperitoneal and intranasal challenges with the fully virulent parental strain.  相似文献   
102.
High-dietary fat intake is a major risk factor for development of metabolic and cardiovascular-renal dysfunction including obesity, coronary artery disease, hypertension, and chronic renal failure. We examined the effect of a high-fat diet on renal function and morphology in spontaneously hypertensive rats (SHR), a phenotype designed to mimic metabolic syndrome. High-fat diet induced increase (P < 0.05) in blood pressure, body weight, and renal lipid deposition in these rats. This increase in body weight was accompanied by elevations (P < 0.05) of blood glucose and low-density lipoprotein (LDL) levels, a decrease (P < 0.05) in adiponectin and increases (P < 0.05) in plasma monocyte chemotactic protein-1 (MCP-1) along with renal macrophage infiltration. These pathophysiological perturbations were attenuated (P < 0.05) by heme oxygenase-1 (HO-1) induction by treatment with cobalt protoporphyrin (CoPP). Further effects of CoPP included increased (P < 0.05) renal expression of adiponectin along with enhancement (P < 0.05) of pAKT, pAMPK, and p-eNOS in SHRs fed a high-fat diet. Prevention of such beneficial effects of CoPP by the concurrent administration of the heme-HO inhibitor stannous mesoporphyrin (SnMP) corroborates the role of HO system in mediating such effects. Taken together, our results demonstrate that high-fat diet induces a metabolic syndrome-like phenotype in hypertensive rats, which is amenable to rescue by increases in HO-1- and adiponectin-dependent pathways.  相似文献   
103.
Polycystin signaling is likely to be regulated by phosphorylation. While a number of potential protein kinases and their target phosphorylation sites on polycystin-1 have been identified, the corresponding phosphatases have not been extensively studied. We have now determined that polycystin-1 is a regulatory subunit for protein phosphatase-1α (PP1α). Sequence analysis has revealed the presence of a highly conserved PP1-interaction motif in the cytosolic, C-terminal tail of polycystin-1; and we have shown that transfected PP1α specifically co-immunoprecipitates with a polycystin-1 C-tail construct. To determine whether PP1α dephosphorylates polycystin-1, a PKA-phosphorylated GST-polycystin-1 fusion protein was shown to be dephosphorylated by PP1α but not by PP2B (calcineurin). Mutations within the PP1-binding motif of polycystin-1, including an autosomal dominant polycystic kidney disease (ADPKD)-associated mutation, significantly reduced PP1α-mediated dephosphorylation of polycystin-1. The results suggest that polycystin-1 forms a holoenzyme complex with PP1α via a conserved PP1-binding motif within the polycystin-1 C-tail, and that PKA-phosphorylated polycystin-1 serves as a substrate for the holoenzyme.  相似文献   
104.
Trafficking and recruitment of eosinophils during allergic airway inflammation is mediated by the phosphatidylinositol 3-kinase (PI3K) family of signaling molecules. The role played by the p110δ subunit of PI3K (PI3K p110δ) in regulating eosinophil trafficking and recruitment was investigated using a selective pharmacological inhibitor (IC87114). Treatment with the PI3K p110δ inhibitor significantly reduced murine bone marrow-derived eosinophil (BM-Eos) adhesion to VCAM-1 as well as ICAM-1 and inhibited activation-induced changes in cell morphology associated with reduced Mac-1 expression and aberrant cell surface localization/distribution of Mac-1 and α4. Infused BM-Eos demonstrated significantly decreased rolling and adhesion in inflamed cremaster muscle microvessels of mice treated with IC87114 compared with vehicle-treated mice. Furthermore, inhibition of PI3K p110δ significantly attenuated eotaxin-1-induced BM-Eos migration and prevented eotaxin-1-induced changes in the cytoskeleton and cell morphology. Knockdown of PI3K p110δ with siRNA in BM-Eos resulted in reduced rolling, adhesion, and migration, as well as inhibition of activation-induced changes in cell morphology, validating its role in regulating trafficking and migration. Finally, in a mouse model of cockroach antigen-induced allergic airway inflammation, oral administration of the PI3K p110δ inhibitor significantly inhibited airway eosinophil recruitment, resulting in attenuation of airway hyperresponsiveness in response to methacholine, reduced mucus secretion, and expression of proinflammatory molecules (found in inflammatory zone-1 and intelectin-1). Overall, these findings indicate the important role played by PI3K p110δ in mediating BM-Eos trafficking and migration by regulating adhesion molecule expression and localization/distribution as well as promoting changes in cell morphology that favor recruitment during inflammation.  相似文献   
105.
Bim is a proapoptotic BH3-only Bcl-2 family member.?In response to death stimuli, Bim dissociates from the dynein light chain 1 (DYNLL1/LC8), where it is inactive, and can then initiate Bax/Bak-mediated mitochondria-dependent apoptosis. We found that Bim depletion increases autophagosome synthesis in cells and in?vivo, and this effect is inhibited by overexpression of cell death-deficient Bim. Bim inhibits autophagy by interacting with Beclin 1, an autophagy regulator, and this interaction is facilitated by LC8. Bim bridges the Beclin 1-LC8 interaction and thereby inhibits autophagy by mislocalizing Beclin 1 to the dynein motor complex. Starvation, an autophagic stimulus, induces Bim phosphorylation, which abrogates LC8 binding to Bim, leading to dissociation of Bim and Beclin 1. Our data suggest that Bim switches locations between apoptosis-inactive/autophagy-inhibitory and apoptosis-active/autophagy-permissive sites.  相似文献   
106.
Perception of external stimuli and generation of an appropriate response are crucial for host colonization by pathogens. In pathogenic fungi, mitogen activated protein kinase (MAPK) pathways regulate dimorphism, biofilm/mat formation, and virulence. Signaling mucins, characterized by a heavily glycosylated extracellular domain, a transmembrane domain, and a small cytoplasmic domain, are known to regulate various signaling pathways. In Candida albicans, the mucin Msb2 regulates the Cek1 MAPK pathway. We show here that Msb2 is localized to the yeast cell wall and is further enriched on hyphal surfaces. A msb2Δ/Δ strain formed normal hyphae but had biofilm defects. Cek1 (but not Mkc1) phosphorylation was absent in the msb2Δ/Δ mutant. The extracellular domain of Msb2 was shed in cells exposed to elevated temperature and carbon source limitation, concomitant with germination and Cek1 phosphorylation. Msb2 shedding occurred differentially in cells grown planktonically or on solid surfaces in the presence of cell wall and osmotic stressors. We further show that Msb2 shedding and Cek1 phosphorylation were inhibited by addition of Pepstatin A (PA), a selective inhibitor of aspartic proteases (Saps). Analysis of combinations of Sap protease mutants identified a sap8Δ/Δ mutant with reduced MAPK signaling along with defects in biofilm formation, thereby suggesting that Sap8 potentially serves as a major regulator of Msb2 processing. We further show that loss of either Msb2 (msb2Δ/Δ) or Sap8 (sap8Δ/Δ) resulted in higher C. albicans surface β-glucan exposure and msb2Δ/Δ showed attenuated virulence in a murine model of oral candidiasis. Thus, Sap-mediated proteolytic cleavage of Msb2 is required for activation of the Cek1 MAPK pathway in response to environmental cues including those that induce germination. Inhibition of Msb2 processing at the level of Saps may provide a means of attenuating MAPK signaling and reducing C. albicans virulence.  相似文献   
107.
Chromosome inversions are intra-chromosomal rearrangements formed when the chromosome breaks occur at two places, and in the process of repair the intervening segments are joined in an inverted or opposite manner. Inversions themselves do not appear to cause clinical anomalies, if balanced. Abnormal phenotypes can occur due to gene disruption at the point of breakage and reunion or due to duplication/deficiency recombinants formed during crossover at meiosis. We report a case with familial deletion 4q syndrome in a 1-year-old female child with dysmorphism and congenital abnormalities. The deletion was an outcome of a paracentric inversion 4q31.2q35.2. The deletion was confirmed by fluorescence in situ hybridization using telomeric DNA probes for chromosome No. 4. An attempt was made to correlate the genotype with the phenotype. The father had the same rearrangement with a milder phenotype. The recurrence risk in such cases is high.  相似文献   
108.
Growing evidence supports the importance of ubiquitin ligases in the pathogenesis of muscular disorders, although underlying mechanisms remain largely elusive. Here we show that the expression of RNF5 (aka RMA1), an ER-anchored RING finger E3 ligase implicated in muscle organization and in recognition and processing of malfolded proteins, is elevated and mislocalized to cytoplasmic aggregates in biopsies from patients suffering from sporadic-Inclusion Body Myositis (sIBM). Consistent with these findings, an animal model for hereditary IBM (hIBM), but not their control littermates, revealed deregulated expression of RNF5. Further studies for the role of RNF5 in the pathogenesis of s-IBM and more generally in muscle physiology were performed using RNF5 transgenic and KO animals. Transgenic mice carrying inducible expression of RNF5, under control of beta-actin or muscle specific promoter, exhibit an early onset of muscle wasting, muscle degeneration and extensive fiber regeneration. Prolonged expression of RNF5 in the muscle also results in the formation of fibers containing congophilic material, blue-rimmed vacuoles and inclusion bodies. These phenotypes were associated with altered expression and activity of ER chaperones, characteristic of myodegenerative diseases such as s-IBM. Conversely, muscle regeneration and induction of ER stress markers were delayed in RNF5 KO mice subjected to cardiotoxin treatment. While supporting a role for RNF5 Tg mice as model for s-IBM, our study also establishes the importance of RNF5 in muscle physiology and its deregulation in ER stress associated muscular disorders.  相似文献   
109.
V accessory proteins from Paramyxoviruses are important in viral evasion of the innate immune response. Here, using a cell survival assay that identifies both inhibitors and activators of interferon regulatory factor 3 (IRF3)-mediated gene induction, we identified select paramyxoviral V proteins that inhibited double-stranded RNA-mediated signaling; these are encoded by mumps virus (MuV), human parainfluenza virus 2 (hPIV2), and parainfluenza virus 5 (PIV5), all members of the genus Rubulavirus. We showed that interaction between V and the IRF3/7 kinases, TRAF family member-associated NFkappaB activator (TANK)-binding kinase 1 (TBK1)/inhibitor of kappaB kinase epsilon (IKKe), was essential for this inhibition. Indeed, V proteins were phosphorylated directly by TBK1/IKKe, and this, intriguingly, resulted in lowering of the cellular level of V. Thus, it appears that V mimics IRF3 in both its phosphorylation by TBK1/IKKe and its subsequent degradation. Finally, a PIV5 mutant encoding a V protein that could not inhibit IKKe was much more susceptible to the antiviral effects of double-stranded RNA than the wild-type virus. Because many innate immune response signaling pathways, including those initiated by TLR3, TLR4, RIG-I, MDA5, and DNA-dependent activator of IRFs (DAI), use TBK1/IKKe as the terminal kinases to activate IRFs, rubulaviral V proteins have the potential to inhibit all of them.  相似文献   
110.
Free radicals are implicated in numerous disease processes including motor neuron degeneration (MND). Antioxidant defense enzymes: superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSHPx), glutathione reductase (GR) and glucose-6-phosphate dehydrogenase (G-6-PDH) in the erythrocytes are capable of detoxifying reactive oxygen species produced endogenously or exogenously. In the present study, the extent of lipid peroxidation (LPO) and antioxidant defenses were evaluated in the erythrocytes of 20 sporadic amyotrophic lateral sclerosis (ALS) patients and 20 controls. We observed that lipid peroxidation in the erythrocytes of amyotrophic lateral sclerosis patients significantly increased with respect to controls (P<0.001). On the other hand, catalase activity was found to be significantly lower (P<0.001). The activities of glucose-6-phosphate dehydrogenase, glutathione reductase and glutathione levels were also found to be significantly reduced in ALS patients compared to healthy subjects (P<0.001, P<0.01 and P<0.01, respectively). It was further observed that lipid peroxidation started to increase and catalase, glutathione reductase, glucose-6-phosphate dehydrogenase enzyme activities and glutathione levels started to decrease as amyotrophic lateral sclerosis progressed from 6 to 24 months, suggesting a correlation between these parameters and duration of amyotrophic lateral sclerosis. This study confirms the involvement of oxidative stress during the progression of amyotrophic lateral sclerosis and the need to develop specific peripheral biomarkers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号