首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   219篇
  免费   10篇
  2024年   1篇
  2021年   12篇
  2020年   2篇
  2019年   5篇
  2018年   8篇
  2017年   6篇
  2016年   9篇
  2015年   12篇
  2014年   14篇
  2013年   20篇
  2012年   20篇
  2011年   10篇
  2010年   13篇
  2009年   11篇
  2008年   11篇
  2007年   7篇
  2006年   11篇
  2005年   3篇
  2004年   10篇
  2003年   5篇
  2002年   4篇
  2001年   3篇
  1999年   2篇
  1998年   6篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   5篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
排序方式: 共有229条查询结果,搜索用时 265 毫秒
31.
ProjectThe ob gene has either been found to be mutant defective resulting in a deficiency of its product leptin or leptin has been found to be resistant to its receptors in obese human and rodents. The factors inducing leptin resistance have not been identified. Since excessive bioavailability of Zn has been implicated in obesity, we investigated if its excess in diet induces leptin resistance.ProcedureFor the investigations, three groups of Wistar rats were included in this study and they were fed on equicalories semi synthetic basal diet containing 20 mg, 40 mg or 80 mg Zn/kg diet for 120 days. There after they were sacrificed for hormonal status and intestinal investigations.ResultsThe data of this study revealed that the food intake, gain in body weight, serum leptin, glucose, insulin, cortisol increased with increased Zn concentration in diet. TEM study showed a positive correlation between Zn concentration in diet and number of microvilli/unit surface area of the mucosal epithelial cells of the intestine.ConclusionThe results of this study suggest that excessive bioavailability of Zn induces leptin resistance through increased uptake of nutrients at intestinal level, leading to the growth of the fat cells which aggravated the leptin synthesis and its release in the blood stream. In spite of its higher circulating level, it was unable to reduce the food intake and gain in body weight in Zn treated rats equivalent to the control group.  相似文献   
32.
BACKGROUND AND PURPOSE: Withanolides are naturally occurring chemical compounds. They are secondary metabolites produced via oxidation of steroids and structurally consist of a steroid-backbone bound to a lactone or its derivatives. They are known to protect plants against herbivores and have medicinal value including anti-inflammation, anti-cancer, adaptogenic and anti-oxidant effects. Withaferin A (Wi-A) and Withanone (Wi-N) are two structurally similar withanolides isolated from Withania somnifera, also known as Ashwagandha in Indian Ayurvedic medicine. Ashwagandha alcoholic leaf extract (i-Extract), rich in Wi-N, was shown to kill cancer cells selectively. Furthermore, the two closely related purified phytochemicals, Wi-A and Wi-N, showed differential activity in normal and cancer human cells in vitro and in vivo. We had earlier identified several genes involved in cytotoxicity of i-Extract in human cancer cells by loss-of-function assays using either siRNA or randomized ribozyme library. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we have employed bioinformatics tools on four genes, i.e., mortalin, p53, p21 and Nrf2, identified by loss-of-function screenings. We examined the docking efficacy of Wi-N and Wi-A to each of the four targets and found that the two closely related phytochemicals have differential binding properties to the selected cellular targets that can potentially instigate differential molecular effects. We validated these findings by undertaking parallel experiments on specific gene responses to either Wi-N or Wi-A in human normal and cancer cells. We demonstrate that Wi-A that binds strongly to the selected targets acts as a strong cytotoxic agent both for normal and cancer cells. Wi-N, on the other hand, has a weak binding to the targets; it showed milder cytotoxicity towards cancer cells and was safe for normal cells. The present molecular docking analyses and experimental evidence revealed important insights to the use of Wi-A and Wi-N for cancer treatment and development of new anti-cancer phytochemical cocktails.  相似文献   
33.
A high frequency in vitro shoot bud differentiation and multiple shoot production protocol from hypocotyl segments of 8 to 10-d-old seedlings of cotton has been developed. Murashige and Skoog (MS) basal medium with Nitsch and Nitsch vitamins was found to be optimal in shoot regeneration. A combination of 2 mg dm−3 thidiazuron and 0.05 mg dm−3 naphthaleneacetic acid was the most effective for shoot regeneration (76 %) and an average of 10.6 shoots per responding explant. Combination of the cytokinins benzylaminopurine and kinetin induced better regeneration response than their individual treatments. Supplementation of the culture medium with ethylene inhibitor silver nitrate and activated charcoal showed beneficial effects. Optimal rooting was obtained on half-strength MS medium supplemented with 1 mg dm−3 indolebutyric acid and activated charcoal. Scanning electron micrographs of in vitro cultured explants revealed that shoot primordia were formed de novo.  相似文献   
34.
We have isolated a strain of Bacillus thuringiensis (Bt) from Indian soil samples that was shown to be toxic to Achaea janata larvae. The isolate, named B. thuringiensis DOR4, serotypically identified with the standard subspecies kurstaki (H3a3b3c) and produced bipyramidal inclusions along with an amorphous type. Although the plasmid pattern of DOR4 was different from that of the reference strain, a crystal protein profile showed the presence of two major bands (130 and 65 kDa) similar to those of Bt subsp. kurstaki HD-1. To verify the cry gene content of DOR4, triplex PCR analysis was performed; it showed amplification of the cry1C gene in addition to cry1Aa, cry1Ac, cry2A, and cry2B genes, but not the cry1Ab gene. RT-PCR analysis showed the expression of cry1Aa and cry1Ac genes. In vitro proteolysis of DOR4 protoxin with midgut extract generated products of different sizes. Zymogram analysis of DOR4 protoxin as substrate pointed to a number of distinct proteases that were responsible for activation of protoxins. Furthermore, toxin overlay analysis revealed the presence of multiple toxin-binding proteins in midgut epithelium. Based on all these characterizations, we suggest that the Bt DOR4 strain can be exploited for an A. janata control program.  相似文献   
35.
Oxygen is sometimes deliberately introduced in winemaking at various stages to enhance yeast biomass formation and prevent stuck fermentation. However, there is limited information on how such interventions affect the dynamics of yeast populations. Our previous study in synthetic grape juice showed that oxygen supply enhances the persistence of Lachancea thermotolerans, Torulaspora delbrueckii and Metschnikowia pulcherrima. The three non-Saccharomyces yeasts showed differences in growth as a function of oxygen. The present study focused on evaluating the influence of short oxygen pulses on population dynamics and the aroma profile of Chardonnay wine inoculated with L. thermotolerans and Saccharomyces cerevisiae. The results confirmed a positive effect of oxygen on the relative performance of L. thermotolerans. The mixed culture fermentation with L. thermotolerans with S. cerevisiae developed a distinct aroma profile when compared to monoculture S. cerevisiae. Specifically, a high concentration of esters, medium chain fatty acids and higher alcohols was detected in the mixed culture fermentation. The data also showed that the longer persistence of L. thermotolerans due to addition of oxygen pulses influenced the formation of major volatile compounds such as ethyl acetate, ethyl butyrate, ethyl hexanoate, ethyl caprylate, ethyl caprate, ethyl-3-hydroxybutanoate, ethyl phenylacetate, propanol, isobutanol, butanol, isoamyl alcohol, hexanol, isobutyric acid, butyric acid, iso-valeric acid, hexanoic acid, octanoic acid, and decanoic acid.  相似文献   
36.
The ubiquitous SbcCD exonuclease complex has been shown to perform an important role in DNA repair across prokaryotes and eukaryotes. However, they have remained uncharacterized in the ancient and stress-tolerant cyanobacteria. In the cyanobacterium Anabaena sp. strain PCC7120, SbcC and SbcD homologs, defined on the basis of the presence of corresponding functional domains, are annotated as hypothetical proteins, namely Alr3988 and All4463 respectively. Unlike the presence of sbcC and sbcD genes in a bicistronic operon in most organisms, these genes were distantly placed on the chromosome in Anabaena, and found to be negatively regulated by LexA. Both the genes were found to be essential in Anabaena as the individual deletion mutants were non-viable. On the other hand, the proteins could be individually overexpressed in Anabaena with no effect on normal cell physiology. However, they contributed positively to enhance the tolerance to different DNA damage-inducing stresses, such as mitomycin C and UV- and γ-radiation. This indicated that the two proteins, at least when overexpressed, could function independently and mitigate the damage caused due to the formation of DNA adducts and single- and double-strand breaks in Anabaena. This is the first report on possible independent in vivo functioning of SbcC and SbcD homologs in any bacteria, and the first effort to functionally characterize the proteins in any cyanobacteria.  相似文献   
37.
38.
Excitotoxicty, a key pathogenic event is characteristic of the onset and development of neurodegeneration. The glutamatergic neurotransmission mediated through different glutamate receptor subtypes plays a pivotal role in the onset of excitotoxicity. The role of NMDA receptor (NMDAR), a glutamate receptor subtype, has been well established in the excitotoxicity pathogenesis. NMDAR overactivation triggers excessive calcium influx resulting in excitotoxic neuronal cell death. In the present study, a series of benzazepine derivatives, with the core structure of 3-methyltetrahydro-3H-benzazepin-2-one, were synthesised in our laboratory and their NMDAR antagonist activity was determined against NMDA-induced excitotoxicity using SH-SY5Y cells. In order to assess the multi-target-directed potential of the synthesised compounds, Aβ1–42 aggregation inhibitory activity of the most potent benzazepines was evaluated using thioflavin T (ThT) and Congo red (CR) binding assays as Aβ also imparts toxicity, at least in part, through NMDAR overactivation. Furthermore, neuroprotective, free radical scavenging, anti-oxidant and anti-apoptotic activities of the two potential test compounds (7 and 14) were evaluated using primary rat hippocampal neuronal culture against Aβ1–42-induced toxicity. Finally, in vivo neuroprotective potential of 7 and 14 was assessed using intracerebroventricular (ICV) rat model of Aβ1–42-induced toxicity. All of the synthesised benzazepines have shown significant neuroprotection against NMDA-induced excitotoxicity. The most potent compound (14) showed relatively higher affinity for the glycine binding site as compared with the glutamate binding site of NMDAR in the molecular docking studies. 7 and 14 have been shown experimentally to abrogate Aβ1–42 aggregation efficiently. Additionally, 7 and 14 showed significant neuroprotective, free radical scavenging, anti-oxidant and anti-apoptotic properties in different in vitro and in vivo experimental models. Finally, 7 and 14 attenuated Aβ1–42-induced tau phosphorylation by abrogating activation of tau kinases, i.e. MAPK and GSK-3β. Thus, the results revealed multi-target-directed potential of some of the synthesised novel benzazepines against excitotoxicity.  相似文献   
39.

Purpose

The purpose of this study was to analyze the environmental trade-offs of cascading reuse of electric vehicle (EV) lithium-ion batteries (LIBs) in stationary energy storage at automotive end-of-life.

Methods

Two systems were jointly analyzed to address the consideration of stakeholder groups corresponding to both first (EV) and second life (stationary energy storage) battery applications. The environmental feasibility criterion was defined by an equivalent-functionality lead-acid (PbA) battery. A critical methodological challenge addressed was the allocation of environmental impacts associated with producing LIBs across the EV and stationary use systems. The model also tested sensitivity to parameters such as the fraction of battery cells viable for reuse, service life of refurbished cells, and PbA battery efficiency.

Results and discussion

From the perspective of EV applications, cascading reuse of an LIB in stationary energy storage can reduce net cumulative energy demand and global warming potential by 15 % under conservative estimates and by as much as 70 % in ideal refurbishment and reuse conditions. When post-EV LIB cells were compared directly to a new PbA system for stationary energy storage, the reused cells generally had lower environmental impacts, except in scenarios where very few of the initial battery cells and modules could be reused and where reliability was low (e.g., life span of 1 year or less) in the secondary application.

Conclusions

These findings demonstrate that EV LIB reuse in stationary application has the potential for dual benefit—both from the perspective of offsetting initial manufacturing impacts by extending battery life span as well as avoiding production and use of a less-efficient PbA system. It is concluded that reuse decisions and diversion of EV LIBs toward suitable stationary applications can be based on life cycle centric studies. However, technical feasibility of these systems must still be evaluated, particularly with respect to the ability to rapidly analyze the reliability of EV LIB cells, modules, or packs for refurbishment and reuse in secondary applications.
  相似文献   
40.
In Arabidopsis , NPR1 ( AtNPR1 ) regulates salicylic acid (SA)-mediated activation of PR genes at the onset of systemic acquired resistance. AtNPR1 also modulates SA-induced suppression of jasmonic acid-responsive gene expression, and npr1 mutants manifest enhanced herbivore resistance. We have raised stable transgenic tobacco lines, expressing AtNPR1 constitutively, which showed elevated expression of PR1 and PR2 genes upon SA treatment. Herbivore bioassays with a generalist polyphagous pest, Spodoptera litura , revealed that the transgenic lines exhibited enhanced resistance compared to the wild-type plants, particularly with respect to younger larval populations. Insect-mediated injury induced several protease inhibitors (PIs), more significantly a 40-kDa serine PI in all the tobacco lines, but the induction was higher in the transgenic plants. We show in this communication that heterologous expression of AtNPR1 provides enhanced resistance to early larval populations of the herbivore, Spodoptera in transgenic tobacco plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号