首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   288篇
  免费   28篇
  2021年   3篇
  2020年   4篇
  2019年   6篇
  2018年   10篇
  2017年   7篇
  2016年   9篇
  2015年   11篇
  2014年   12篇
  2013年   18篇
  2012年   22篇
  2011年   18篇
  2010年   13篇
  2009年   8篇
  2008年   6篇
  2007年   8篇
  2006年   9篇
  2005年   19篇
  2004年   8篇
  2003年   11篇
  2002年   5篇
  2001年   2篇
  1999年   5篇
  1998年   4篇
  1996年   3篇
  1994年   2篇
  1993年   4篇
  1991年   3篇
  1990年   3篇
  1988年   2篇
  1986年   1篇
  1984年   7篇
  1983年   2篇
  1981年   3篇
  1980年   2篇
  1978年   3篇
  1977年   7篇
  1976年   4篇
  1975年   7篇
  1974年   9篇
  1973年   2篇
  1972年   6篇
  1971年   3篇
  1970年   2篇
  1969年   3篇
  1968年   7篇
  1967年   2篇
  1966年   2篇
  1965年   1篇
  1963年   1篇
  1958年   1篇
排序方式: 共有316条查询结果,搜索用时 942 毫秒
311.
312.
313.
A growing body of literature suggests that infanticide is common in a variety of animals. However, most reports are concerned with infanticide by males and these evidences are often indirect or questionable. Here we describe the first videotaped non-parental infanticide by a female common pochard (Aythya ferina) which killed one conspecific duckling. Our observation does not suggest that this attack was caused by a high density of breeding pairs as was found for other ducks (resource competition hypothesis). We speculate that infanticide in this particular case might be adaptive because a reduced number of ducklings in the pond decreased the vulnerability to predation by raptors.  相似文献   
314.
315.
The formation of neuronal networks, during development and regeneration, requires outgrowth of axons along reproducible paths toward their appropriate postsynaptic target cells. Axonal extension occurs at growth cones (GCs) at the tips of axons. GC advance and navigation requires the activity of their cytoskeletal networks, comprising filamentous actin (F‐actin) in lamellipodia and filopodia as well as dynamic microtubules (MTs) emanating from bundles of the axonal core. The molecular mechanisms governing these two cytoskeletal networks, their cross‐talk, and their response to extracellular signaling cues are only partially understood, hindering our conceptual understanding of how regulated changes in GC behavior are controlled. Here, we introduce Drosophila GCs as a suitable model to address these mechanisms. Morphological and cytoskeletal readouts of Drosophila GCs are similar to those of other models, including mammals, as demonstrated here for MT and F‐actin dynamics, axonal growth rates, filopodial structure and motility, organizational principles of MT networks, and subcellular marker localization. Therefore, we expect fundamental insights gained in Drosophila to be translatable into vertebrate biology. The advantage of the Drosophila model over others is its enormous amenability to combinatorial genetics as a powerful strategy to address the complexity of regulatory networks governing axonal growth. Thus, using pharmacological and genetic manipulations, we demonstrate a role of the actin cytoskeleton in a specific form of MT organization (loop formation), known to regulate GC pausing behavior. We demonstrate these events to be mediated by the actin‐MT linking factor Short stop, thus identifying an essential molecular player in this context. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2010  相似文献   
316.
A droplet fractionation method was previously developed to concentrate a dilute nonfoaming protein solution. In that earlier study with invertase, it was demonstrated that droplets created by ultrasonic energy waves could be enriched up to 8 times that of the initial dilute invertase solution. In this study, a mixture of bromelain (a foaming protein) and invertase (a nonfoaming protein) is investigated as a preliminary step to determine if droplet fractionation can also be used to separate a non-foaming protein from foaming proteins. The foaming mixture containing bromelain is first removed by bubbling the binary mixture with air. After the foam is removed, the protein rich air-water interfacial layer is skimmed off (prior to droplet fractionation) so as not to interfere with the subsequent droplet production from the remaining bulk liquid, rich in non-foaming protein. Finally, sonic energy waves are then applied to this residual bulk liquid to recover droplets containing the non-foaming protein, presumed to be invertase. The primary control variable used in this droplet fractionation process is the pH, which ranged for separate experiments between 2 and 9. It was observed that the maximum overall protein partition coefficients of 5 and 4 were achieved at pH 2 and 4, respectively, for the initial foaming experiment followed by the post foaming droplet fractionation experiment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号