首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   997篇
  免费   53篇
  国内免费   1篇
  2023年   18篇
  2022年   16篇
  2021年   60篇
  2020年   28篇
  2019年   33篇
  2018年   49篇
  2017年   31篇
  2016年   60篇
  2015年   91篇
  2014年   77篇
  2013年   88篇
  2012年   91篇
  2011年   86篇
  2010年   39篇
  2009年   28篇
  2008年   44篇
  2007年   36篇
  2006年   25篇
  2005年   11篇
  2004年   21篇
  2003年   14篇
  2002年   11篇
  2001年   8篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1997年   3篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   6篇
  1989年   5篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1984年   5篇
  1983年   2篇
  1981年   5篇
  1979年   2篇
  1978年   3篇
  1977年   2篇
  1976年   3篇
  1974年   3篇
  1973年   2篇
  1972年   2篇
  1970年   3篇
  1968年   2篇
  1967年   2篇
  1966年   4篇
排序方式: 共有1051条查询结果,搜索用时 15 毫秒
21.
22.
Aspergillus fumigatus produces heavily melanized infectious conidia. The conidial melanin is associated with fungal virulence and resistance to various environmental stresses. This 1,8-dihydroxynaphthalene (DHN) melanin is synthesized by enzymes encoded in a gene cluster in A. fumigatus, including two laccases, Abr1 and Abr2. Although this gene cluster is not conserved in all aspergilli, laccases are critical for melanization in all species examined. Here we show that the expression of A. fumigatus laccases Abr1/2 is upregulated upon hyphal competency and drastically increased during conidiation. The Abr1 protein is localized at the surface of stalks and conidiophores, but not in young hyphae, consistent with the gene expression pattern and its predicted role. The induction of Abr1/2 upon hyphal competency is controlled by BrlA, the master regulator of conidiophore development, and is responsive to the copper level in the medium. We identified a developmentally regulated putative copper transporter, CtpA, and found that CtpA is critical for conidial melanization under copper-limiting conditions. Accordingly, disruption of CtpA enhanced the induction of abr1 and abr2, a response similar to that induced by copper starvation. Furthermore, nonpigmented ctpAΔ conidia elicited much stronger immune responses from the infected invertebrate host Galleria mellonella than the pigmented ctpAΔ or wild-type conidia. Such enhancement in eliciting Galleria immune responses was independent of the ctpAΔ conidial viability, as previously observed for the DHN melanin mutants. Taken together, our findings indicate that both copper homeostasis and developmental regulators control melanin biosynthesis, which affects conidial surface properties that shape the interaction between this pathogen and its host.  相似文献   
23.
Poor endometrial perfusion during implantation window is reported to be one of the possible causes of idiopathic recurrent spontaneous miscarriage (IRSM). We have tested the hypothesis that certain angiogenic and vasoactive factors are associated with vascular dysfunction during implantation window in IRSM and, therefore, could play a contributory role in making the endometrium unreceptive in these women. This is a prospective case-controlled study carried out on 66 women with IRSM and age and BMI matched 50 fertile women serving as controls. Endometrial expression of pro-inflammatory (IL-1β, TNF-α, IFN-γ, TGF-β1), anti-inflammatory (IL-4, -10), angiogenesis-associated cytokines (IL-2, -6, -8), angiogenic and vasoactive factors including prostaglandin E2 (PGE2), vascular endothelial growth factor (VEGF), endothelial nitric oxide synthase (eNOS), nitric oxide (NO) and adrenomedullin (ADM) were measured during implantation window by ELISA. Subendometrial blood flow (SEBF) was assessed by color Doppler ultrasonography. Multivariate analysis was used to identify the significant factor(s) responsible for vascular dysfunction in IRSM women during window of implantation and further correlated with vascular dysfunction. Endometrial expression of pro-inflammatory cytokines and PGE2 were up-regulated and anti-inflammatory and angiogenesis-associated cytokines down-regulated in IRSM women as compared with controls. Further, the angiogenic and vasoactive factors including VEGF, eNOS, NO and ADM were found to be down-regulated and SEBF grossly affected in these women. Multivariate analysis identified IL-10, followed by VEGF and eNOS as the major factors contributing towards vascular dysfunction in IRSM women. Moreover, these factors strongly correlated with blood flow impairment. This study provides an understanding that IL-10, VEGF and eNOS are the principal key components having a contributory role in endometrial vascular dysfunction in women with IRSM. Down-regulation of these factors is also associated with impaired endometrial perfusion which possibly makes the endometrium unreceptive that may eventually cause early pregnancy loss.  相似文献   
24.

Objective

Leptin receptors are abundant in human skeletal muscle, but the role of leptin in muscle growth, development and aging is not well understood. Here we utilized a novel mouse model lacking all functional leptin receptor isoforms (POUND mouse, Leprdb/lb) to determine the role of leptin in skeletal muscle.

Methods and Findings

Skeletal muscle mass and fiber diameters were examined in POUND mice, and primary myoblast cultures were used to determine the effects of altered leptin signaling on myoblast proliferation and differentiation. ELISA assays, integrated pathway analysis of mRNA microarrays, and reverse phase protein analysis were performed to identify signaling pathways impacted by leptin receptor deficiency. Results show that skeletal muscle mass and fiber diameter are reduced 30–40% in POUND mice relative to wild-type controls. Primary myoblast cultures demonstrate decreased proliferation and decreased expression of both MyoD and myogenin in POUND mice compared to normal mice. Leptin treatment increased proliferation in primary myoblasts from muscles of both adult (12 months) and aged (24 months) wild-type mice, and leptin increased expression of MyoD and myogenin in aged primary myoblasts. ELISA assays and protein arrays revealed altered expression of molecules associated with the IGF-1/Akt and MAPK/MEK signaling pathways in muscle from the hindlimbs of mice lacking functional leptin receptors.

Conclusion

These data support the hypothesis that the adipokine leptin is a key factor important for the regulation of skeletal muscle mass, and that leptin can act directly on its receptors in peripheral tissues to regulate cell proliferation and differentiation.  相似文献   
25.
Molecular and Cellular Biochemistry - Ultraviolet radiations (UVR) are responsible for a wide variety of acute and chronic effects on the animal skin. However, the effect of UVR-induced oxidative...  相似文献   
26.
The use of medicinal plants for different therapeutic values is well documented in African continent. African diverse biodiversity hotspots provide a wide range of endemic species, which ensures a potential medicinal value. The feasible conservation approach and sustainable harvesting for the medicinal species remains a huge challenge. However, conservation approach through different biotechnological tools such as micropropagation, somatic embryogenesis, synthetic seed production, hairy root culture, molecular markers based study and cryopreservation of endemic African medicinal species is much crucial. In this review, an attempt has been made to provide different in vitro biotechnological approaches for the conservation of African medicinal species. The present review will be helpful in further technology development and deciding the priorities at decision-making levels for in vitro conservation and sustainable use of African medicinal species.  相似文献   
27.
The activation of the Wnt/β-catenin signaling pathway is critical for skeletal development but surprisingly little is known about the requirements for the specific frizzled (Fzd) receptors that recognize Wnt ligands. To define the contributions of individual Fzd proteins to osteoblast function, we profiled the expression of all 10 mammalian receptors during calvarial osteoblast differentiation. Expression of Fzd4 was highly upregulated during in vitro differentiation and therefore targeted for further study. Mice lacking Fzd4 in mature osteoblasts had normal cortical bone structure but reduced cortical tissue mineral density and also exhibited an impairment in the femoral trabecular bone acquisition that was secondary to a defect in the mineralization process. Consistent with this observation, matrix mineralization, markers of osteoblastic differentiation, and the ability of Wnt3a to stimulate the accumulation of β-catenin were reduced in cultures of calvarial osteoblasts deficient for Fzd4. Interestingly, Fzd4-deficient osteoblasts exhibited an increase in the expression of Fzd8 both in vitro and in vivo, which suggests that the two receptors may exhibit overlapping functions. Indeed, ablating a single Fzd8 allele in osteoblast-specific Fzd4 mutants produced a more severe effect on bone acquisition. Taken together, our data indicate that Fzd4 is required for normal bone development and mineralization despite compensation from Fzd8.  相似文献   
28.
Antagonistic capability of Trichoderma harzianum was improved through UV-irradiation. Four different type of mutants, T. harzianum - Ma (Th-Ma), T. harzianum - Mb(Th-Mb), T. harzianum - Mc (Th-Mc), T. harzianum - Md (Th-Md) of T. harzianum and the parent strain (Th-P) were selected for further studies. Th-Ma and Th-Mb showed more antagonistic capability against Macrophomina phaseolina than its parent strain Th-P in dual culture. Biochemical analysis of these four mutants and the parent strain showed that Th-Ma releases higher level of two lytic enzymes i.e. chitinases and cellulases and Th-Mb produces more β-1,3-glucanase activity than the parent strain. Culture filtrate of Th-Ma also showed antifungal properties. Study of the competitive saprophytic ability (CSA) of these four mutants and the parent strain were also made. Th-Ma exhibited higher CSA than the parental isolate while Th-Md had less CSA than all other mutants and the parent strain of T. harzianum.  相似文献   
29.

Background

Genetics of non-alcoholic fatty liver (NAFLD) in Asian Indians has been inadequately studied. We investigated the association of polymorphisms C161T and Pro12Ala of peroxisome proliferator-activated receptor gamma (PPARγ) with clinical and biochemical parameters in Asian Indians with NAFLD.

Methods

In this case–control study, 162 NAFLD cases and 173 controls were recruited. Abdominal ultrasound, clinical and biochemical profiles, fasting insulin levels and value of homeostasis model assessment of insulin resistance were determined. Polymerase chain reaction–restriction fragment length polymorphisms of two polymorphisms were performed. The association of these polymorphisms with clinical and biochemical parameters was analysed.

Results

Higher frequency of Ala and T alleles of PPARγ was obtained in cases. Ala/Ala genotype of PPARγ (Pro12Ala) was associated with significantly higher serum triglycerides (TG), alkaline phosphatase (ALK) and waist–hip ratio in cases as compared to controls. In C161T polymorphism, TT genotype was significantly increased TG (p = 0.04), total cholesterol (p = 0.01), ALK (p = 0.04) and gamma-glutamyl transpeptidase (p = 0.007) in cases. The linkage disequilibrium for these two single-nucleotide polymorphisms of PPARγ was differed in cases (D1 = 0.1; p = 0.006) and controls (D1 = 0.07; p = 0.1). Using a multivariate analysis after adjusting for age, sex and body mass index, the presence of NAFLD was linked to these two polymorphisms (odds ratio 1.64 (95% CI: 1.09–2.45, p = 0.05)].

Conclusion

Asian Indians in north India carrying the alleles Ala and T of PPARγ (Pro12Ala and C161T) polymorphisms are predisposed to develop NAFLD.  相似文献   
30.
In contrast to prokaryotes, the precise mechanism of incorporation of ribosomal proteins into ribosomes in eukaryotes is not well understood. For the majority of eukaryotic ribosomal proteins, residues critical for rRNA binding, a key step in the hierarchical assembly of ribosomes, have not been well defined. In this study, we used the mammalian ribosomal protein L13a as a model to investigate the mechanism(s) underlying eukaryotic ribosomal protein incorporation into ribosomes. This work identified the arginine residue at position 68 of L13a as being essential for L13a binding to rRNA and incorporation into ribosomes. We also demonstrated that incorporation of L13a takes place during maturation of the 90S preribosome in the nucleolus, but that translocation of L13a into the nucleolus is not sufficient for its incorporation into ribosomes. Incorporation of L13a into the 90S preribosome was required for rRNA methylation within the 90S complex. However, mutations abolishing ribosomal incorporation of L13a did not affect its ability to be phosphorylated or its extraribosomal function in GAIT element-mediated translational silencing. These results provide new insights into the mechanism of ribosomal incorporation of L13a and will be useful in guiding future studies aimed at fully deciphering mammalian ribosome biogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号