首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   751篇
  免费   108篇
  2021年   11篇
  2018年   7篇
  2016年   7篇
  2015年   27篇
  2014年   10篇
  2013年   26篇
  2012年   35篇
  2011年   35篇
  2010年   12篇
  2009年   11篇
  2008年   23篇
  2007年   36篇
  2006年   24篇
  2005年   28篇
  2004年   27篇
  2003年   32篇
  2002年   25篇
  2001年   24篇
  2000年   25篇
  1999年   26篇
  1998年   11篇
  1997年   10篇
  1996年   9篇
  1995年   8篇
  1994年   9篇
  1993年   10篇
  1992年   12篇
  1991年   12篇
  1990年   14篇
  1989年   13篇
  1988年   9篇
  1987年   14篇
  1986年   9篇
  1985年   18篇
  1984年   18篇
  1983年   14篇
  1982年   10篇
  1980年   15篇
  1979年   7篇
  1978年   14篇
  1977年   7篇
  1976年   14篇
  1974年   13篇
  1973年   11篇
  1972年   11篇
  1971年   15篇
  1970年   13篇
  1969年   8篇
  1968年   9篇
  1966年   11篇
排序方式: 共有859条查询结果,搜索用时 201 毫秒
11.
Jahn CL  Prescott KE  Waggener MW 《Genetics》1988,120(1):123-134
In the hypotrichous ciliated protozoan Oxytricha nova, approximately 95% of the micronuclear genome, including all of the repetitive DNA and most of the unique sequence DNA, is eliminated during the formation of the macronuclear genome. We have examined the interspersion patterns of repetitive and unique and eliminated and retained sequences in the micronuclear genome by characterizing randomly selected clones of micronuclear DNA. Three major classes of clones have been defined: (1) those containing primarily unique, retained sequences; (2) those containing only unique, eliminated sequences; and (3) those containing only repetitive, eliminated sequences. Clones of type one and three document two aspects of organization observed previously: clustering of macronuclear destined sequences and the presence of a prevalent repetitive element. Clones of the second type demonstrate for the first time that eliminated unique sequence DNA occurs in long stretches uninterrupted by repetitive sequences. To further examine repetitive sequence interspersion, we characterized the repetitive sequence family that is present in 50% of the clones (class three above). A consensus map of this element was obtained by mapping approximately 80 phage clones and by hybridization to digests of micronuclear DNA. The repeat element is extremely large (approximately 24 kb) and is interspersed with both macronuclear destined sequences and eliminated unique sequences.  相似文献   
12.
M E Bayliss  J M Prescott 《Biochemistry》1986,25(24):8113-8117
Aeromonas aminopeptidase contains two nonidentical metal binding sites that have been shown by both spectroscopy and kinetics to be capable of interacting with one another [Prescott, J.M., Wagner, F.W., Holmquist, B., & Vallee, B.L. (1985) Biochemistry 24, 5350-5356]. The effects of metal ion substitutions on the susceptibility of the p-nitroanilides of L-alanine, L-valine, and L-leucine--substrates that are hydrolyzed at widely differing rates by native Aeromonas aminopeptidase--were studied by determining values of kcat and Km for the 16 metalloenzymes that result from all possible combinations of Zn2+, Co2+, Ni2+, and Cu2+ in each of the two sites. The different combinations of metal ions and substrates yield a broad range in kinetic values; kcat varies by more than 1800-fold, Km by 3000-fold, and kcat/Km ratios by more than 10,000. L-Leucine-p-nitroanilide is by far the most susceptible of the three substrates, and the hyperactivation previously observed with aminopeptidase containing either Ni2+ or Cu2+ in the first binding site and Zn2+ in the second site occurs only with the two poorer substrates, L-alanine-p-nitroanilide and L-valine-p-nitroanilide. Although the enzyme with Zn2+ in both sites hydrolyzes the substrates with N-terminal alanine and valine poorly, it is extremely effective toward L-leucine-p-nitroanilide. Neither metal binding site can be identified as controlling either Km or kcat; both parameters are influenced by the identity of the metal ions, by the site each occupies, and, most strongly, by the substrate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
13.
The slow, tight binding of bestatin and amastatin to aminopeptidases   总被引:5,自引:0,他引:5  
Bestatin reversibly inhibits Aeromonas aminopeptidase (EC 3.4.11.10) in a process that is remarkable for its unusual degree of time dependence. The binding of bestatin by both Aeromonas aminopeptidase and cytosolic leucine aminopeptidase (EC 3.4.11.1) is slow and tight, with Ki values (determined from rate constants) of 1.8 X 10(-8) and 5.8 X 10(-10) M, respectively. In contrast, microsomal aminopeptidase (EC 3.4.11.2) binds bestatin in a rapidly reversible process with a Ki value of 1.4 X 10(-6) M. Kinetic analysis of the slow inhibition observed is facilitated by the use of a variety of experimental treatments, primarily measurements made during pre-equilibrium; however, careful selection of conditions permits use also of steady state observations. When titrated with bestatin, 1 mol of cytosolic leucine aminopeptidase (containing 6 g atoms each of zinc and manganese) is rendered 80% inactive by 1 mol of inhibitor, thus suggesting that enzymatic activity depends on one active site/hexamer; titration of Aeromonas aminopeptidase by bestatin reveals a 1:1 stoichiometry. Amastatin inhibits all three aminopeptidases through the mechanism of slow, tight binding with Ki values ranging from 3.0 X 10(-8) to 2.5 X 10(-10) M. This behavior of microsomal aminopeptidase contrasts sharply with its rapidly reversible inhibition by bestatin. The slow, tight binding observed with five of the six aminopeptidase-inhibitor pairs investigated suggests the formation of a transition state analog complex between the enzyme and inhibitor. Physical evidence consistent with this possibility was provided by the observation that both bestatin and amastatin perturb the absorption spectrum of cobalt Aeromonas aminopeptidase.  相似文献   
14.
15.
Several lectins were tested for their capacity to alter the antibody response to type III pneumococcal polysaccharide (SSS-III). The antibody response was enhanced by concanavalin A (Con A), phytohemagglutinin (PHA), as well as lectins from Phytolacca americana (Pa-2), Pisum sativum (PSA), and Lens culinaris (LCH), when these lectins were given 2 days after immunization with SSS-III; however, suppression was obtained when Con A and Pa-2 were given at the time of immunization. By contrast the lectins from Vicia villosa (VVL) and Bauhinia purpurea (BPA) did not alter the antibody response. Since the lectins PSA and LCH bind to the same monosaccharide as Con A, whereas the other lectins bind to different monosaccharides, these findings indicate that there is no relationship between nominal monosaccharide specificity and the capacity to modulate the antibody response. Substantial increases in the magnitude of the IgG1 antibody response was noted after the administration of Con A whereas profound enhancement of IgG2a antibody response was noted after PHA was given.  相似文献   
16.
17.
In order to study the derivation of the macronuclear genome from the micronuclear genome in Oxytricha nova micronuclear DNA was partially digested with EcoRI, size fractionated, and then cloned in the lambda phage Charon 8. Clones were selected a) at random b) by hybridization with macronuclear DNA or c) by hybridization with clones of macronuclear DNA. One group of these clones contains only unique sequence DNA, and all of these had sequences that were homologous to macronuclear sequences. The number of macronuclear genes with sequences homologous to these micronuclear clones indicates that macronuclear sequences are clustered in the micronuclear genome. Many micronuclear clones contain repetitive DNA sequences and hybridize to numerous EcoRI fragments of total micronuclear DNA, yielding similar but non-identical patterns. Some micronuclear clones containing these repetitive sequences also contained unique sequence DNA that hybridized to a macronuclear sequence. These clones define a major interspersed repetitive sequence family in the micronuclear genome that is eliminated during formation of the macronuclear genome.  相似文献   
18.
19.
20.
The timing of DNA synthesis in Amoeb proteus   总被引:1,自引:0,他引:1  
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号