首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   157篇
  免费   7篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   6篇
  2017年   3篇
  2016年   5篇
  2015年   9篇
  2014年   10篇
  2013年   12篇
  2012年   21篇
  2011年   18篇
  2010年   17篇
  2009年   10篇
  2008年   11篇
  2007年   11篇
  2006年   3篇
  2005年   6篇
  2004年   5篇
  2003年   4篇
  2002年   2篇
  1996年   1篇
  1995年   1篇
  1988年   1篇
排序方式: 共有164条查询结果,搜索用时 333 毫秒
101.
Trypanosome trans-sialidase (TS) is a sialic acid-transferring enzyme and a novel ligand of tyrosine kinase (TrkA) receptors but not of neurotrophin receptor p75NTR. Here, we show that TS targets TrkB receptors on TrkB-expressing pheochromocytoma PC12 cells and colocalizes with TrkB receptor internalization and phosphorylation (pTrkB). Wild-type TS but not the catalytically inactive mutant TSDeltaAsp98-Glu induces pTrkB and mediates cell survival responses against death caused by oxidative stress in TrkA- and TrkB-expressing cells like those seen with nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). These same effects are not observed in Trk deficient PC12(nnr5) cells, but are re-established in PC12(nnr5) cells stably transfected with TrkA or TrkB, are partially blocked by inhibitors of tyrosine kinase (K-252a), mitogen-activated protein/mitogen-activated kinase (PD98059) and completely blocked by LY294002, an inhibitor of phosphatidylinositol 3-kinase (PI3K). Both TrkA- and TrkB-expressing cells pretreated with TS or their natural ligands are protected against cell death caused by serum/glucose deprivation or from hypoxia-induced neurite retraction. The cell survival effects of NGF and BDNF against oxidative stress are significantly inhibited by the neuraminidase inhibitor, Tamiflu. Together, these observations suggest that trypanosome TS mimics neurotrophic factors in cell survival responses against oxidative stress, hypoxia-induced neurite retraction and serum/glucose deprivation.  相似文献   
102.
103.
104.
Reactive oxygen species (ROS) have been poised at a straddled state of being beneficiary as well detrimental depending on its threshold levels. Maintaining the homeostasis of ROS is imperative for normal cellular physiology, wherein physiological concentrations of ROS are involved in cell signaling and elevated ROS contribute to the development of various diseases. Superoxide dismutases (SODs), enzymes involved in dismutation of superoxide anion to hydrogen peroxide, arrive as a first line of defense when there is perturbation in the homeostasis of ROS. As mitochondria are the main site of superoxide production, among SODs, mitochondrial manganese SOD (MnSOD) is the primary antioxidant enzyme that protects cells from ROS. Most importantly, knockout of MnSOD leads to postnatal lethality and tissue-specific conditional knockout in brain resulted in death of mice, conclusively portraying the essential role of MnSOD in development. Although MnSOD has been extensively discussed with the purview of tumor biology and aging, understanding the crucial role of MnSOD in stem cell physiology is still at its infant stage. Ever increasing progress in stem cell research has recently unveiled the essential role of MnSOD in self-renewal and differentiation of stem cells. In this review, we will conglomerate the current aspects by which MnSOD can contribute to embryonic stem cells’ and adult stem cells’ functions and interpret the necessity of understanding MnSOD for further stem cell mediated applications.  相似文献   
105.
To control their movement, cells need to coordinate actin assembly with the geometric features of their substrate. Here, we uncover a role for the actin regulator WASP in the 3D migration of neutrophils. We show that WASP responds to substrate topology by enriching to sites of inward, substrate-induced membrane deformation. Superresolution imaging reveals that WASP preferentially enriches to the necks of these substrate-induced invaginations, a distribution that could support substrate pinching. WASP facilitates recruitment of the Arp2/3 complex to these sites, stimulating local actin assembly that couples substrate features with the cytoskeleton. Surprisingly, WASP only enriches to membrane deformations in the front half of the cell, within a permissive zone set by WASP’s front-biased regulator Cdc42. While WASP KO cells exhibit relatively normal migration on flat substrates, they are defective at topology-directed migration. Our data suggest that WASP integrates substrate topology with cell polarity by selectively polymerizing actin around substrate-induced membrane deformations in the front half of the cell.  相似文献   
106.
Obesity is a major risk factor for a myriad of disorders such as insulin resistance and diabetes. The mechanisms underlying these chronic conditions are complex but low grade inflammation and alteration of the endogenous stress defense system are well established. Previous studies indicated that impairment of HSP-25 and HSP-72 was linked to obesity, insulin resistance and diabetes in humans and animals while their induction was associated with improved clinical outcomes. In an attempt to identify additional components of the heat shock response that may be dysregulated by obesity, we used the RT2-Profiler PCR heat shock array, complemented with RT-PCR and validated by Western blot and immunohistochemistry. Using adipose tissue biopsies and PBMC of non-diabetic lean and obese subjects, we report the downregulation of DNAJB3 cochaperone mRNA and protein in obese that negatively correlated with percent body fat (P = 0.0001), triglycerides (P = 0.035) and the inflammatory chemokines IP-10 and RANTES (P = 0.036 and P = 0.02, respectively). DNAJB positively correlated with maximum oxygen consumption (P = 0.031). Based on the beneficial effect of physical exercise, we investigated its possible impact on DNAJB3 expression and indeed, we found that exercise restored the expression of DNAJB3 in obese subjects with a concomitant decrease of phosphorylated JNK. Using cell lines, DNAJB3 protein was reduced following treatment with palmitate and tunicamycin which is suggestive of the link between the expression of DNAJB3 and the activation of the endoplasmic reticulum stress. DNAJB3 was also shown to coimmunoprecipiate with JNK and IKKβ stress kinases along with HSP-72 and thus, suggesting its potential role in modulating their activities. Taken together, these data suggest that DNAJB3 can potentially play a protective role against obesity.  相似文献   
107.
Switchgrass biomass samples collected at three different stages of maturity were seen degrading into reducing sugars and glucose when exposed to 1-(alkylsulfonic)-3-methylimidazolium Brönsted acidic ionic liquids under thermal and microwave conditions. The highest reducing sugar (58.1?±?2.1 %) and glucose (15.3?±?0.5 %) yields were obtained for switchgrass samples dissolved in 1-(butylsulfonic)-3-methylimidazolium chloride ionic liquid by heating at 70 °C for 1 h followed by treatment with 0.22 g water/g switchgrass and then heating at 70 °C for 1 h for the hydrolysis of polysaccharides. The samples treated under microwave conditions produced relatively lower yields of reducing sugar (22.0?±?1.5–37.2?±?1.8 %) and glucose (8.0?±?0.2–12.8?±?0.4 %) yields, compared to heat-treated samples.  相似文献   
108.
109.
Carotenoid lutein was evaluated for its antioxidant potential both in vitro and in vivo. Lutein was found to scavenge superoxide radicals, hydroxyl radicals and inhibited in vitro lipid peroxidation. Concentrations needed for 50% inhibition (IC50) were 21, 1.75 and 2.2 microg/mL respectively. It scavenged 2,2-diphenyl-1-picryl hydrazyl (IC50 35 microg/mL) and nitric oxide radicals (IC50 3.8 microg/mL) while 2,2-azobis-3-ethylbenzthiozoline-6-sulfonic acid radicals were inhibited at higher concentration. Ferric reducing power (50%) of lutein was found to be equal 0.3 micromols/mL of FeSO4.7H2O. Its oral administration inhibited superoxide generation in macrophages in vivo by 34.18, 64.32 and 70.22% at doses of 50, 100 and 250 mg/kg body weight. The oral administration of lutein in mice for 1 month significantly increased the activity of catalase, superoxide dismutase, glutathione reductase and glutathione in blood and liver while the activity of glutathione peroxidase and glutathione-S-transferase were found to be increased in the liver tissue. Implication of these results in terms of its role in reducing degenerative diseases is discussed.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号