首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   698篇
  免费   54篇
  2024年   1篇
  2023年   9篇
  2022年   10篇
  2021年   31篇
  2020年   13篇
  2019年   10篇
  2018年   25篇
  2017年   26篇
  2016年   33篇
  2015年   58篇
  2014年   39篇
  2013年   64篇
  2012年   92篇
  2011年   57篇
  2010年   38篇
  2009年   37篇
  2008年   34篇
  2007年   39篇
  2006年   30篇
  2005年   25篇
  2004年   10篇
  2003年   13篇
  2002年   20篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   6篇
  1997年   2篇
  1996年   1篇
  1995年   4篇
  1994年   3篇
  1993年   3篇
  1991年   4篇
  1990年   4篇
  1989年   4篇
  1988年   1篇
  1986年   1篇
排序方式: 共有752条查询结果,搜索用时 15 毫秒
61.
Patny A  Desai PV  Avery MA 《Proteins》2006,65(4):824-842
Angiotensin II type 1 (AT(1)) receptor belongs to the super-family of G-protein-coupled receptors, and antagonists of the AT(1) receptor are effectively used in the treatment of hypertension. To understand the molecular interactions of these antagonists, such as losartan and telmisartan, with the AT(1) receptor, a homology model of the human AT(1) (hAT(1)) receptor with all connecting loops was constructed from the 2.6 A resolution crystal structure (PDB i.d., 1L9H) of bovine rhodopsin. The initial model generated by MODELLER was subjected to a stepwise ligand-supported model refinement. This protocol involved initial docking of non-peptide AT(1) antagonists in the putative binding site, followed by several rounds of iterative energy minimizations and molecular dynamics simulations. The final model was validated based on its correlation with several structure-activity relationships and site-directed mutagenesis data. The final model was also found to be in agreement with a previously reported AT(1) antagonist pharmacophore model. Docking studies were performed for a series of non-peptide AT(1) receptor antagonists in the active site of the final hAT(1) receptor model. The docking was able to identify key molecular interactions for all the AT(1) antagonists studied. Reasonable correlation was observed between the interaction energy values and the corresponding binding affinities of these ligands, providing further validation for the model. In addition, an extensive unrestrained molecular dynamics simulation showed that the docking-derived bound pose of telmisartan is energetically stable. Knowledge gained from the present studies can be used in structure-based drug design for developing novel ligands for the AT(1) receptor.  相似文献   
62.
Forty weaned male guinea pigs of 208.20±6.62 g mean body weight were divided into 4 groups of 10 animals in a randomized block design. All of the guinea pigs were fed a basal diet [25% ground maize hay, 30% ground maize grain, 22% ground chickpea (Cicer arietinum L.), 9.5% deoiled rice bran, 6% soybean meal, 6% fish meal, 1.45% mineral supplement (without Zn) and 0.05% ascorbic acid] and available green fodder. Group I served as the control (no Zn supplementation), whereas 20 ppm Zn was added in the diet in groups II, III, and IV either as zinc sulfate (ZnSO4), zinc amino acid complex (ZAAC), and ZnSO4 + ZAAC in equal parts, respectively. Experimental feeding lasted for 70 d, including a 3-d digestibility trial. Blood was collected through cardiac puncture from four animals in each group at d 0 and subsequently at the end of experimental feeding. After 40 d of experimental feeding, four animals from each group were injected with 0.4 mL of Brucella abortus cotton strain-19 vaccine to assess the humoral immune response of the animals. After 10 wk of study, four animals from each group were sacrificed to study the concentration of Zn, Cu, Co, Fe, and Mn in the liver, pancreas and spleen. Results revealed no significant difference in the feed intake, body weight gain, and digestibility of the nutrients, except for crude protein (CP) digestibility, which was significantly (p<0.05) lower in group IV. Although concentrations of serum glucose, Ca, and P and the albumin:globulin (A:G) ratio were similar in the different groups, the total protein, albumin, and serum alkaline phosphatase activity were higher in all of the Zn-supplemented groups on d 70. The serum Zn levels at the end of experimental feeding were significantly higher in groups II and III, whereas serum Mn levels were found to be significantly (p<0.05) higher in groups III and IV. The organ weights (as percentage of body weights) did not show any differences among the treatment groups. Although the Mn concentration was significantly (p<0.05) higher in the pancreas, the Cu concentration was significantly (p<0.05) reduced in the spleen in all of the Zn-supplemented groups. The humoral immune response (antibody titer values) on d 14 of vaccination was significantly (p<0.05) higher in all of the Zn-supplemented groups. It was concluded that the 20-ppm level of Zn in the diet might be adequate for growth and nutrient utilization in guinea pigs, but supplementation of 20-ppm zinc significantly improved the immune response and impact was more prominent with the ZAAC (organic source) compared to ZnSO4 (inorganic source).  相似文献   
63.
It is well-known that secondary metabolite production is repressed by excess nitrogen substrate available in the fermentation media. Although the nitrogen catabolite repression has been known, quantitative process models have not been reported to represent this phenomenon in complex medium. In this paper, we present a cybernetic model for rifamycin B production via Amycolatopsis mediterranei S699 in complex medium, which is typically used in industry. Nitrogen substrate is assumed to be present in two forms in the medium; available nitrogen (S ANS) such as free amino acids and unavailable nitrogen (S UNS) such as peptides and proteins. The model assumes that an inducible enzyme catalyzes the conversion of S UNS to S ANS. Although S ANS is required for growth and product formation, high concentrations were found to inhibit rifamycin production. To experimentally validate the model, five different organic nitrogen sources were used that differ in the ratio of S ANS/S UNS. The model successfully predicts higher rifamycin B productivity for nitrogen sources that contain lower initial S ANS. The higher productivity is attributed to the sustained availability of S ANS at low concentration via conversion of S UNS to S ANS, thereby minimizing the effects of nitrogen catabolite repression on rifamycin production. The model can have applications in model-based optimization of substrate feeding recipe and in monitoring and control of fed batch processes.  相似文献   
64.
Body fragmentation, in some animal groups, is a mechanism for survival and asexual reproduction. Lumbriculus variegatus (Müller, 1774), an aquatic oligochaete worm, is capable of regenerating into complete individuals from small body fragments following injury and reproduces primarily by asexual reproduction. Few studies have determined the cellular mechanisms that underlie fragmentation, either regenerative or asexual. We utilized boric acid treatment, which blocks regeneration of segments in amputated fragments and blocks architomic fission during asexual reproduction, to investigate mechanistic relationships and differences between these two modes of development. Neural morphallaxis, involving changes in sensory fields and giant fiber conduction, was detected in amputated fragments in the absence of segmental regeneration. Furthermore, neural morphallactic changes occurred as a result of developmental mechanisms of asexual reproduction, even when architomy was prevented. These results show that fragmentation in L. variegatus, during injury or asexual reproduction, employs developmental and morphallactic processes that can be mechanistically dissociated by boric acid exposure. In regeneration following injury, compensatory morphallaxis occurred in response to fragmentation. In contrast, anticipatory morphallaxis was induced in preparation for fragmentation during asexual reproduction. Thus, various forms of regeneration in this lumbriculid worm can be activated independently and in different developmental contexts.  相似文献   
65.

Background  

Industrial fermentation typically uses complex nitrogen substrates which consist of mixture of amino acids. The uptake of amino acids is known to be mediated by several amino acid transporters with certain preferences. However, models to predict this preferential uptake are not available. We present the stoichiometry for the utilization of amino acids as a sole carbon and nitrogen substrate or along with glucose as an additional carbon source. In the former case, the excess nitrogen provided by the amino acids is excreted by the organism in the form of ammonia. We have developed a cybernetic model to predict the sequence and kinetics of uptake of amino acids. The model is based on the assumption that the growth on a specific substrate is dependent on key enzyme(s) responsible for the uptake and assimilation of the substrates. These enzymes may be regulated by mechanisms of nitrogen catabolite repression. The model hypothesizes that the organism is an optimal strategist and invests resources for the uptake of a substrate that are proportional to the returns.  相似文献   
66.
67.
Thermophilic l-asparaginases display high stability and activity at elevated temperatures. However, they are of limited use in leukemia therapy because of their low substrate affinity and reduced activity under physiological conditions. In an attempt to combine stability with activity at physiological conditions, 3 active-site mutants of Pyrococcus furiosus l-asparaginase (PfA) were developed. The mutants, specifically K274E, showed improved enzymatic properties at physiological conditions as compared to the wild type. All variants were thermodynamically stable and resistant to proteolytic digestion. None of the enzymes displayed glutaminase activity, a highly desirable therapeutic property. All variants showed higher and significant killing of human cell lines HL60, MCF7, and K562 as compared to the Escherichia coli l-asparaginase. Our study revealed that increased substrate accessibility through the active site loop plays a major role in determining activity. A new mechanistic insight has been proposed based on molecular dynamics simulated structures, where dynamic flipping of a critical Tyr residue is responsible for the activity of thermophilic l-asparaginases. Our study not only resulted in development of PfA mutants with combination of desirable properties but also gave a mechanistic insight about their activity.  相似文献   
68.
Previously, we have demonstrated that the chloride channel ClC-2 modulates intestinal mucosal barrier function. In the present study, we investigated the role of ClC-2 in epithelial barrier development and maintenance in Caco-2 cells. During early monolayer formation, silencing of ClC-2 with small interfering (si)RNA led to a significant delay in the development of transepithelial resistance (TER) and disruption of occludin localization. Proteomic analysis employing liquid chromatography-mass spectrometry /mass spectrometry revealed association of ClC-2 with key proteins involved in intracellular trafficking, including caveolin-1 and Rab5. In ClC-2 siRNA-treated cells, occludin colocalization with caveolin-1 was diffuse and in the subapical region. Subapically distributed occludin in ClC-2 siRNA-treated cells showed marked colocalization with Rab5. To study the link between ClC-2 and trafficking of occludin in confluent epithelial monolayers, a Caco-2 cell clone expressing ClC-2 short hairpin (sh)RNA was established. Disruption of caveolae with methyl-β-cyclodextrin (MβCD) caused a marked drop in TER and profound redistribution of caveolin-1-occludin coimmunofluorescence in ClC-2 shRNA cells. In ClC-2 shRNA cells, focal aggregations of Rab5-occludin coimmunofluorescence were present within the cytoplasm. Wortmannin caused an acute fall in TER in ClC-2 shRNA cells and subapical, diffuse redistribution of Rab5-occludin coimmunofluorescence in ClC-2 shRNA cells. An endocytosis and recycling assay for occludin revealed higher basal rate of endocytosis of occludin in ClC-2 shRNA cells. Wortmannin significantly reduced the rate of recycling of occludin in ClC-2 shRNA cells. These data clearly indicate that ClC-2 plays an important role in the modulation of tight junctions by influencing caveolar trafficking of the tight junction protein occludin.  相似文献   
69.
Amphotericin B (AmB) liposome formulations are very successful in the treatment of fungal infections and leishmaniasis. But higher cost limits its widespread use among people in developing countries. Therefore, we have developed a modified ethanol-injection method for the preparation of AmB liposomes. Two liposomal formulations were developed with dimyristoyl phosphatidylcholine [F-1a] and soya phosphatidylcholine [F-2a], along with egg phosphatidyl glycerol and cholesterol. AmB was dissolved in acidified dimethyl acetamide and mixed with ethanolic lipid solution and rapidly injected in 5% dextrose to prepare liposomes. Liposomes were characterized on the basis of size (~100?nm), zeta (-43.3?±?2.8 mV) and percent entrapment efficiency (>95%). The in vitro release study showed an insignificant difference (P?≥?0.05) for 24-hour release between marketed AmB liposomes (AmBisome) and F-1a and F-2a. Proliposome concentrate, used for the preparation of in situ liposomes, was physically stable for more than 3 months at experimental conditions. Similarly, AmB showed no sign of degradation in reconstituted liposomes stored at 2-8°C for more than 3 months. IC(50) value of Ambisome (0.18 μg/mL) was comparatively similar to F-1a (0.17 μg/mL) and F-2a (0.16 μg/mL) against intramacrophagic amastigotes. Under experimental conditions, a novel modified method for AmB liposomes is a great success and generates interest for development as a platform technology for many therapeutic drug products.  相似文献   
70.
The interaction between Hessian fly (Mayetiola destructor) and wheat (Triticum aestivum) involves a gene-for-gene resistance mechanism. The incompatible interaction leading to resistance involves up-regulation of several Hfr (Hessian fly responsive) genes encoding proteins with potential insecticidal activity. The encoded proteins HFR-1, HFR-2 and HFR-3 all possess lectin-like domains. HFR-1 and HFR-3 were produced as recombinant proteins using Escherichia coli and Pichia pastoris, respectively as expression hosts. Purified recombinant proteins were assayed for insecticidal effects towards cereal aphid (Sitobion avenae), an insect to which wheat shows only tolerance. Both HFR-1 and HFR-3 were found to be insecticidal towards S. avenae when fed in artificial diet. Although HFR-3 has sequence similarity and similar chitin-binding activity to wheat germ agglutinin (WGA), the latter protein was almost non-toxic to S. avenae. HFR-3 binds strongly to aphid midguts after ingestion, whereas WGA binds but does not persist over a feed-chase period. Quantitative PCR showed that Hfr-3 mRNA does not increase in level after cereal aphid infestation. The results suggest that the lack of effective resistance to cereal aphid in wheat is not due to an absence of genes encoding suitable insecticidal proteins, but results from a failure to up-regulate gene expression in response to aphid attack.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号