首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3570篇
  免费   216篇
  国内免费   1篇
  2023年   27篇
  2022年   40篇
  2021年   79篇
  2020年   53篇
  2019年   53篇
  2018年   76篇
  2017年   74篇
  2016年   98篇
  2015年   137篇
  2014年   146篇
  2013年   209篇
  2012年   218篇
  2011年   222篇
  2010年   176篇
  2009年   114篇
  2008年   158篇
  2007年   192篇
  2006年   148篇
  2005年   138篇
  2004年   117篇
  2003年   92篇
  2002年   78篇
  2001年   69篇
  2000年   67篇
  1999年   58篇
  1998年   31篇
  1997年   21篇
  1995年   30篇
  1994年   27篇
  1993年   28篇
  1992年   43篇
  1991年   37篇
  1990年   30篇
  1989年   42篇
  1988年   39篇
  1987年   43篇
  1986年   51篇
  1985年   33篇
  1984年   47篇
  1983年   31篇
  1982年   29篇
  1981年   32篇
  1980年   32篇
  1979年   41篇
  1977年   47篇
  1976年   22篇
  1975年   27篇
  1974年   30篇
  1973年   20篇
  1972年   22篇
排序方式: 共有3787条查询结果,搜索用时 15 毫秒
31.
Summary Single and multisensor field effect transistors (FET) with a pH-sensitive Si/SiO2/Si3N4/Ta2O5-gate and reference electrode (for single sensor) were developed and used for manufacturing the following biological (Bio)-FETs: for glucose analysis, glucose oxidase-FET (GOD-FET); for urea analysis, urease-FET; and for cephalosporin C analysis, cephalosporinase-FET. The GOD-FETs were integrated into flow injection analysis (FIA) of the Eppendorf variables analyser (EVA) system and used for monitoring the glucose concentration in microbial cultivation and production processes with recombinant Escherichia coli K12 MF, recombinant E. coli JM103, Saccharomyces cerevisiae H620, and Candida boidinii. Urease-FET-FIA was used to monitor the urea concentration in a simulated cultivation of Cephalosporium acremonium and urease-FET-FIA and GOD-FET-FIA for the monitoring of urea and glucose concentrations in simulated S. cerevisiae cultivations.  相似文献   
32.
The relative roles of the two structural aspects of nonenzymic glycation sites of hemoglobin A, namely the ease with which the amino groups could form the aldimine adducts and the propensity of the microenvironments of the respective aldimines to facilitate the Amadori rearrangement, in dictating the site selectivity of nonenzymic glycation with aldotriose has been investigated. The chemical reactivity of the amino groups of hemoglobin A forin vitro reductive glycation with aldotriose is distinct from that in the nonreductive mode. The reactivity of amino groups of hemoglobin A toward reductive glycation (i.e., propensity for aldimine formation) decreases in the order Val-1(), Val-1(), Lys-66(), Lys-61(), and Lys-16(). The overall reactivity of hemoglobin A toward nonreductive glycation decreased in the order Lys-16(), Val-1(), Lys-66(), Lys-82(), Lys-61(), and Val-1(). Since the aldimine is the common intermediate for both the reductive and nonreductive modification, the differential selectivity of protein for the two modes of glycation is clearly a reflection of the propensity of the microenvironments of nonenzymic glycation sites to facilitate the isomerization reaction (i.e., Amadori rearrangement). A semiquantitative estimate of this propensity of the microenvironment of the nonenzymic glycation sites has been obtained by comparing the nonreductive (nonenzymic) and reductive modification at individual glycation sites. The microenvironment of Lys-16() is very efficient in facilitating the rearrangement and the relative efficiency decreases in the order Lys-16(), Lys-82(), Lys-66(), Lys-61(), Val-1(), and Val-1(). The propensity of the microenvironment of Lys-16() to facilitate the Amadori rearrangement of the aldimine is about three orders of magnitude higher than that of Val-1() and is about 50 times higher than that of Val-1(). The extent of nonenzymic glycation at the individual sites is modulated by various factors, such as thepH, concentration of aldotriose, and the concentration of the protein. The nucleophiles—such as tris, glycine ethyl ester, and amino guanidine—inhibit the glycation by trapping the aldotriose. The nonenzymic glycation inhibitory power of nucleophile is directly related to its propensity to form aldimine. Thus, the extent of inhibition of nonenzymic glycation at a given site by a nucleophile directly reflects the relative role ofpK a of the site in dictating the glycation at that site. The nonenzymic glycation of an amino group of a protein is an additive/synergestic consequence of the propensity of the site to form aldimine adducts on one hand, and the propensity of its microenvironment to facilitate the isomerization of the aldimines to ketoamines on the other. The isomerization potential of microenvironment plays the dominant role in dictating the site specificity of the nonenzymic glycation of proteins.  相似文献   
33.
The GTP-dependence for stimulatory and inhibitory regulation of plasma membrane adenylate cyclase activity was measured in plasma membrane fractions isolated from a variety of cell types (platelets, lymphocytes, PC12 cells, GH3 cells, NBP2 cells, and hepatocytes). This report shows that the isolation of plasma membranes for the study of GTP-dependent adenylate cyclase activity was, for some cells, enhanced by the exposure of the cells to glycerol prior to cell lysis. The isolation of plasma membranes from other cells, which did not appear to be sensitive to glycerol pretreatment, was enhanced by the removal of heavy particulate matter prior to fractionation of the cell lysate. The regulation of enzyme activity by various agents was found to be dependent upon the presence of (exogenous) GTP to varying degrees, indicating variable contamination of membrane preparations with GTP. It is concluded that (i) exposure of platelets and lymphocytes to glycerol prior to cell lysis decreases subsequent contamination of the plasma membrane preparation with GTP, and (ii) although glycerol pretreatment of other cells does not ensure the subsequent isolation of plasma membrane adenylate cyclase activity displaying high requirements for (exogenous) GTP, it is a reasonable first approach to be used during the development of procedures for the isolation of plasma membranes.  相似文献   
34.
When yeast FLP recombinase is expressed from the phage lambda PR promoter in a Salmonella host, it cannot efficiently repress an operon controlled by an operator/promoter region that includes a synthetic, target FLP site. On the basis of this phenotype, we have identified four mutant FLP proteins that function as more efficient repressors of such an operon. At least two of these mutant FLP proteins bind better to the FLP site in vivo and in vitro. One mutant changes the presumed active site tyrosine residue of FLP protein to phenylalanine, is blocked in recombination, and binds the FLP site about five-fold better than the wild-type protein. A second mutant protein that functions as a more efficient repressor retains catalytic activity. We conclude that the eukaryotic yeast FLP recombinase, when expressed in a heterologous prokaryotic host, can function as a repressor, and that mutant FLP proteins that bind DNA more tightly may be selected as more efficient repressors.  相似文献   
35.
The characteristics of the uptake of lipophilic cations tetraphenylphosphonium (TPP+) into Candida albicans have been investigated to establish whether TPP+ can be used as a membrane potential probe for this yeast. A membrane potential (delta psi, negative inside) across the plasma membrane of C. albicans was indicated by the intracellular accumulation of TPP+. The steady-state distribution of TPP+ was reached within 60 min and varied according to the expected changes of delta psi. Agents known to depolarize membrane potential caused a rapid and complete efflux of accumulated TPP+. The initial influx of TPP+ was linear over a wide range of TPP+ concentrations (2.5-600 microM), indicating a non mediated uptake. Thus, TPP+ is a suitable delta psi probe for this yeast.  相似文献   
36.
37.
In the presence of ATP hepatic microsomes sequester calcium. This sequestration is thought to be important in the modulation of free cytosolic calcium concentration. We find that on the addition of NADPH the uptake of calcium by the hepatic microsomes is inhibited 27-85%. This inhibition is reversed by the addition of 1 mM reduced glutathione (85-91% of control), incubation under a nitrogen atmosphere (112% of control), or incubation in a 80% carbon monoxide/20% oxygen atmosphere (75% of control). Superoxide dismutase had no effect on the inhibition, while catalase reversed the inhibition by 35%. The addition of 1 mM reduced glutathione at 2 and 5 min after the addition of NADPH led to uptakes of calcium which paralleled the uptake seen when the reduced glutathione was added at the beginning of the incubation. The effect of reduced glutathione showed saturation kinetics with a Km of 10 microM. Together these data suggest that cytochrome P-450 reduces the activity of the microsomal ATP-dependent calcium pump both by the production of hydrogen peroxide and by the direct oxidation of the protein thiols. The reversal of this effect by reduced glutathione appears to be enzymatically catalyzed.  相似文献   
38.
Clathrin (8 S) is known to polymerize into two varieties of basket structures (150 S or 300 S) under the normal buffer conditions [100 mM 2-(N-morpholino)ethanesulfonic acid (Mes), pH 5.9-6.7] used for the isolation of coated vesicles. However, it is now observed that under very low salt conditions (2 mM Mes, pH 5.9), it forms a homogeneous species with a sedimentation coefficient of 27 S. Increasing the salt concentration to 50 mM Mes completely converts all the 27S species into 150S baskets. Sedimentation equilibrium data show that this 27S species has a molecular weight that is 6 times that of the clathrin protomer and is the result of highly cooperative reversible self-association of the 8S protomer. Light-scattering studies show that the stabilities of 27S species and baskets (150 S or 300 S) are comparable. Fluorescent labeling of sulfhydryl groups with N-(1-anilinonaphthalenyl)maleimide indicates that the conformation of clathrin in 27S species and baskets (150 S or 300 S) is similar. Trypsin digestion reveals that in the 27S species clathrin has a conformation differing from that in both the 8S species and baskets.  相似文献   
39.
P V Prasad  Y Hatefi 《Biochemistry》1986,25(9):2459-2464
Data presented in this paper suggest that D-(-)-beta-hydroxybutyrate dehydrogenase (BDH) purified from bovine heart mitochondria contains an essential carboxyl group and an essential histidyl residue at or near the active site. Lactate and malate dehydrogenases, which catalyze reactions analogous to that catalyzed by BDH, also contain an aspartyl and a histidyl residue at the active site [Birktoft, J.J., & Banaszak, L.J. (1983) J. Biol. Chem. 258, 472-482]. In addition, all three enzymes contain an essential arginyl residue, apparently concerned with electrostatic interaction with their respective carboxylic acid substrates, and promote ternary adduct formation involving the enzyme, NAD, and sulfite.  相似文献   
40.
Summary The effect of calcium in the water relations and tolerance to moisture deficits was tested in groundnut and cowpea. In both species, enrichment of tissue with calcium resulted in maintenance of a higher water status under stress associated with low proline accumulation. The extent of membrane damage (as reflected by the absorbance at 273 nm) was lesser in leaves of plants fed with higher levels of Ca++ when subjected to simulated stress. The rate of water loss from the leaves of Ca++-enriched plants was also lower. The possible role of Ca++ in inducing membrane stability and maintenance of higher water status is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号