首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   236篇
  免费   13篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   5篇
  2015年   9篇
  2014年   10篇
  2013年   6篇
  2012年   17篇
  2011年   13篇
  2010年   12篇
  2009年   14篇
  2008年   12篇
  2007年   16篇
  2006年   20篇
  2005年   10篇
  2004年   15篇
  2003年   17篇
  2002年   11篇
  2001年   13篇
  2000年   4篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1987年   3篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1978年   1篇
  1975年   2篇
  1974年   2篇
  1969年   1篇
  1968年   1篇
  1949年   1篇
  1941年   1篇
排序方式: 共有249条查询结果,搜索用时 15 毫秒
241.
242.
We present formal evolutionary models for the origins and persistence of the practice of Female Genital Modification (FGMo). We then test the implications of these models using normative cross-cultural data on FGMo in Africa and Bayesian phylogenetic methods that explicitly model adaptive evolution. Empirical evidence provides some support for the findings of our evolutionary models that the de novo origins of the FGMo practice should be associated with social stratification, and that social stratification should place selective pressures on the adoption of FGMo; these results, however, are tempered by the finding that FGMo has arisen in many cultures that have no social stratification, and that forces operating orthogonally to stratification appear to play a more important role in the cross-cultural distribution of FGMo. To explain these cases, one must consider cultural evolutionary explanations in conjunction with behavioral ecological ones. We conclude with a discussion of the implications of our study for policies designed to end the practice of FGMo.  相似文献   
243.
The glycosyltransferase WaaG is involved in the synthesis of lipopolysaccharides that constitute the outer leaflet of the outer membrane in Gram-negative bacteria such as Escherichia coli. WaaG has been identified as a potential antibiotic target, and inhibitor scaffolds have previously been investigated. WaaG is located at the cytosolic side of the inner membrane, where the enzyme catalyzes the transfer of the first outer-core glucose to the inner core of nascent lipopolysaccharides. Here, we characterized the binding of WaaG to membrane models designed to mimic the inner membrane of E. coli. Based on the crystal structure, we identified an exposed and largely α-helical 30-residue sequence, with a net positive charge and several aromatic amino acids, as a putative membrane-interacting region of WaaG (MIR-WaaG). We studied the peptide corresponding to this sequence, along with its bilayer interactions, using circular dichroism, fluorescence quenching, fluorescence anisotropy, and NMR. In the presence of dodecylphosphocholine, MIR-WaaG was observed to adopt a three-dimensional structure remarkably similar to the segment in the crystal structure. We found that the membrane interaction of WaaG is conferred at least in part by MIR-WaaG and that electrostatic interactions play a key role in binding. Moreover, we propose a mechanism of anchoring WaaG to the inner membrane of E. coli, where the central part of MIR-WaaG inserts into one leaflet of the bilayer. In this model, electrostatic interactions as well as surface-exposed Tyr residues bind WaaG to the membrane.  相似文献   
244.

Background  

Dogs were an important element in many native American cultures at the time Europeans arrived. Although previous ancient DNA studies revealed the existence of unique native American mitochondrial sequences, these have not been found in modern dogs, mainly purebred, studied so far.  相似文献   
245.
246.
Ohne ZusammenfassungVortrag auf der 57. Jahresversammlung der D. O. G. in Münster am 2. Juni 1939.  相似文献   
247.
To examine the evolutionary basis of a behavior, an established approach (known as the phenotypic gambit) is to assume that the behavior is controlled by a single allele, the fitness effects of which are derived from a consideration of how the behavior interacts, via life-history, with other ecological factors. Here we contrast successful applications of this approach with several examples of an influential and superficially similar line of research on the evolutionary basis of human cooperation. A key difference is identified: in the latter line of research the focal behavior, cooperation, is abstractly defined in terms of immediate fitness costs and benefits. Selection is then assumed to act on strategies in an iterated social context for which fitness effects can be derived by aggregation of the abstractly defined immediate fitness effects over a lifetime. This approach creates a closed theoretical loop, rendering models incapable of making predictions or providing insight into the origin of human cooperation. We conclude with a discussion of how evolutionary approaches might be appropriately used in the study of human social behavior.  相似文献   
248.
Aquaporins of the TIP subfamily (Tonoplast Intrinsic Proteins) have been suggested to facilitate permeation of water and ammonia across the vacuolar membrane of plants, allowing the vacuole to efficiently sequester ammonium ions and counteract cytosolic fluctuations of ammonia. Here, we report the structure determined at 1.18 Å resolution from twinned crystals of Arabidopsis thaliana aquaporin AtTIP2;1 and confirm water and ammonia permeability of the purified protein reconstituted in proteoliposomes as further substantiated by molecular dynamics simulations. The structure of AtTIP2;1 reveals an extended selectivity filter with the conserved arginine of the filter adopting a unique unpredicted position. The relatively wide pore and the polar nature of the selectivity filter clarify the ammonia permeability. By mutational studies, we show that the identified determinants in the extended selectivity filter region are sufficient to convert a strictly water-specific human aquaporin into an AtTIP2;1-like ammonia channel. A flexible histidine and a novel water-filled side pore are speculated to deprotonate ammonium ions, thereby possibly increasing permeation of ammonia. The molecular understanding of how aquaporins facilitate ammonia flux across membranes could potentially be used to modulate ammonia losses over the plasma membrane to the atmosphere, e.g., during photorespiration, and thereby to modify the nitrogen use efficiency of plants.  相似文献   
249.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号