首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   400篇
  免费   41篇
  2021年   5篇
  2019年   7篇
  2018年   5篇
  2017年   6篇
  2016年   3篇
  2015年   15篇
  2014年   14篇
  2013年   18篇
  2012年   19篇
  2011年   17篇
  2010年   6篇
  2009年   11篇
  2008年   11篇
  2007年   10篇
  2006年   15篇
  2005年   11篇
  2004年   9篇
  2003年   19篇
  2002年   11篇
  2001年   10篇
  2000年   11篇
  1999年   8篇
  1998年   6篇
  1997年   7篇
  1995年   6篇
  1992年   6篇
  1991年   8篇
  1990年   9篇
  1989年   8篇
  1988年   8篇
  1987年   6篇
  1986年   12篇
  1985年   13篇
  1984年   6篇
  1983年   5篇
  1982年   4篇
  1981年   8篇
  1980年   5篇
  1979年   8篇
  1978年   7篇
  1976年   3篇
  1975年   10篇
  1974年   5篇
  1970年   6篇
  1969年   3篇
  1968年   5篇
  1966年   4篇
  1965年   2篇
  1963年   2篇
  1961年   7篇
排序方式: 共有441条查询结果,搜索用时 15 毫秒
71.
Robert Volpe 《CMAJ》1964,90(18):1081-1082
  相似文献   
72.
The aim of this work was to compare the effects on human amniotic membrane of freeze-drying and γ-irradiation at doses of 10, 20 and 30 kGy, with freezing. For this purpose, nine cytokines (interleukin 10, platelet-derived growth factor-AA, platelet-derived growth factor-BB, basic fibroblast growth factor, epidermal growth factor, transforming growth factor beta 1, and tissue inhibitors of metalloproteinase-1, -2, and -4) were titrated in 5 different preparations for each of 3 amniotic membranes included in the study. In addition, the extracellular matrix structure of each sample was assessed by transmission electron microscopy. While freeze-drying did not seem to affect the biological structure or cytokine content of the different amniotic membrane samples, γ-irradiation led to a significant decrease in the tissue inhibitors of metalloproteinase-4, basic fibroblast growth factor and epidermal growth factor, and induced structural damage to the epithelium, basement membrane and lamina densa. The higher the irradiation dose the more severe the damage to the amniotic membrane structure. In conclusion, the Authors recommend processing amniotic membrane under sterile conditions to guarantee safety at every step rather than final sterilization with γ-irradiation, thereby avoiding alteration to the biological characteristics of the amniotic membrane.  相似文献   
73.
N-acetylglucosamine 1-phosphate uridyltransferase (GlmU) is a cytoplasmic bifunctional enzyme involved in the biosynthesis of the nucleotide-activated UDP-GlcNAc, which is an essential precursor for the biosynthetic pathways of peptidoglycan and other components in bacteria. The crystal structure of a truncated form of GlmU has been solved at 2.25 A resolution using the multiwavelength anomalous dispersion technique and its function tested with mutagenesis studies. The molecule is composed of two distinct domains connected by a long alpha-helical arm: (i) an N-terminal domain which resembles the dinucleotide-binding Rossmann fold; and (ii) a C-terminal domain which adopts a left-handed parallel beta-helix structure (LbetaH) as found in homologous bacterial acetyltransferases. Three GlmU molecules assemble into a trimeric arrangement with tightly packed parallel LbetaH domains, the long alpha-helical linkers being seated on top of the arrangement and the N-terminal domains projected away from the 3-fold axis. In addition, the 2.3 A resolution structure of the GlmU-UDP-GlcNAc complex reveals the structural bases required for the uridyltransferase activity. These structures exemplify a three-dimensional template for the development of new antibacterial agents and for studying other members of the large family of XDP-sugar bacterial pyrophosphorylases.  相似文献   
74.
This work was undertaken to compare the behavior of Friend erythroleukemia cells in a solenoid, where the magnetic field was 70 μT at 50 Hz (plus 45 μT DC of Earth) with that of the same cells in a magnetically shielded room, where the magnetic field was attenuated to 20 nT DC and 2.5 pT AC. The control laboratory magnetic field corresponded to 45 μT DC and a stray 50 Hz field below 0.2 μT. The culture growth cycle of cells maintained inside the solenoid was slightly accelerated compared with that of cells maintained outside the solenoid (P < .05). This stimulation probably depended on sensitivity of cell cycle to a magnetic field, because, inside the solenoid, the percentage of G1 cells slightly increased during the culture growth cycle, whereas that of S cells slightly decreased. Acceleration of growth was detected soon after exposure of the cultures to the solenoid field, and growth did not change further if the action of this field continued for a long time, accounting for adaptation. The solenoid field also caused a small increase of cell survival without influencing cell volume. By contrast, the culture growth cycle of cells maintained inside the magnetically shielded room was slightly decelerated compared with that of cells maintained outside the room (P < .05). The essential absence of any field inside the magnetically shielded room also caused a small increase of cell volume, whereas, during the culture growth cycle, the percentage of G1 cells decreased, and that of S cells increased. The majority of these events did not change in cells induced to differentiate hemoglobin through dimethylsulfoxide. Bioelectromagnetics 18:58–66, 1997. © 1997 Wiley-Liss, Inc.  相似文献   
75.
(?)-Cubebin (CUB), isolated from seeds of Piper cubeba, was used as starting material to obtain the derivatives (?)-hinokinin (HK) and (?)-O-benzyl cubebin (OBZ). Using paw edema as the experimental model and different chemical mediators (prostaglandin and dextran), it was observed that both derivatives were active in comparison with both negative (5% Tween® 80 in saline) and positive (indomethacin) controls. The highest reduction in the prostaglandin-induced edema was achieved by OBZ (66.0%), while HK caused a 59.2% reduction. Nonetheless, the dextran-induced paw edema was not significantly reduced by either of the derivatives (HK or OBZ), which inhibited edema formation by 18.3% and 3.5%, respectively, in contrast with the positive control, cyproheptadine, which reduced the edema by 56.0%. The docking analysis showed that OBZ presented the most stable ligand-receptor (COX-2 – cyclooxygenase-2) interaction in comparison with CUB and HK.  相似文献   
76.
After gradually moving away from preparation methods prone to artefacts such as plastic embedding and negative staining for cell sections and single particles, the field of cryo electron microscopy (cryo‐EM) is now heading off at unprecedented speed towards high‐resolution analysis of biological objects of various sizes. This ‘revolution in resolution’ is happening largely thanks to new developments of new‐generation cameras used for recording the images in the cryo electron microscope which have much increased sensitivity being based on complementary metal oxide semiconductor devices. Combined with advanced image processing and 3D reconstruction, the cryo‐EM analysis of nucleoprotein complexes can provide unprecedented insights at molecular and atomic levels and address regulatory mechanisms in the cell. These advances reinforce the integrative role of cryo‐EM in synergy with other methods such as X‐ray crystallography, fluorescence imaging or focussed‐ion beam milling as exemplified here by some recent studies from our laboratory on ribosomes, viruses, chromatin and nuclear receptors. Such multi‐scale and multi‐resolution approaches allow integrating molecular and cellular levels when applied to purified or in situ macromolecular complexes, thus illustrating the trend of the field towards cellular structural biology.  相似文献   
77.
78.
Continuous mechanical damage initiates the rhythmic emission of volatiles in lima bean (Phaseolus lunatus) leaves; the emission resembles that induced by herbivore damage. The effect of diurnal versus nocturnal damage on the initiation of plant defense responses was investigated using MecWorm, a robotic device designed to reproduce tissue damage caused by herbivore attack. Lima bean leaves that were damaged by MecWorm during the photophase emitted maximal levels of beta-ocimene and (Z)-3-hexenyl acetate in the late photophase. Leaves damaged during the dark phase responded with the nocturnal emission of (Z)-3-hexenyl acetate, but with only low amounts of beta-ocimene; this emission was followed by an emission burst directly after the onset of light. In the presence of (13)CO(2), this light-dependent synthesis of beta-ocimene resulted in incorporation of 75% to 85% of (13)C, demonstrating that biosynthesis of beta-ocimene is almost exclusively fueled by the photosynthetic fixation of CO(2) along the plastidial 2-C-methyl-D-erythritol 4-P pathway. Jasmonic acid (JA) accumulated locally in direct response to the damage and led to immediate up-regulation of the P. lunatus beta-ocimene synthase gene (PlOS) independent of the phase, that is, light or dark. Nocturnal damage caused significantly higher concentrations of JA (approximately 2-3 times) along with enhanced expression levels of PlOS. Transgenic Arabidopsis thaliana transformed with PlOS promoter :: beta-glucuronidase fusion constructs confirmed expression of the enzyme at the wounded sites. In summary, damage-dependent JA levels directly control the expression level of PlOS, regardless of light or dark conditions, and photosynthesis is the major source for the early precursors of the 2-C-methyl-D-erythritol 4-P pathway.  相似文献   
79.
80.
After the isolation of caracasanamide and caracasandiamide, further hypotensive components of Verbesina caracasana were shown to be N3-prenylagmatine, N1-3',4'-dimethoxycinnamoylagmatine, agmatine and galegin (prenylguanidine). The structures were assigned on the basis of the spectral data of both metabolites and products from their alkaline hydrolyses. A pharmacological analysis of these products is also presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号