首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2529篇
  免费   176篇
  2023年   13篇
  2022年   17篇
  2021年   77篇
  2020年   45篇
  2019年   53篇
  2018年   67篇
  2017年   61篇
  2016年   86篇
  2015年   128篇
  2014年   132篇
  2013年   178篇
  2012年   228篇
  2011年   183篇
  2010年   125篇
  2009年   81篇
  2008年   120篇
  2007年   115篇
  2006年   114篇
  2005年   101篇
  2004年   99篇
  2003年   77篇
  2002年   68篇
  2001年   48篇
  2000年   63篇
  1999年   44篇
  1998年   16篇
  1997年   13篇
  1996年   17篇
  1995年   23篇
  1993年   14篇
  1992年   21篇
  1991年   33篇
  1990年   12篇
  1989年   29篇
  1988年   14篇
  1987年   17篇
  1986年   11篇
  1985年   23篇
  1984年   16篇
  1983年   11篇
  1980年   5篇
  1979年   8篇
  1978年   5篇
  1975年   9篇
  1974年   8篇
  1973年   9篇
  1972年   9篇
  1971年   7篇
  1970年   5篇
  1968年   5篇
排序方式: 共有2705条查询结果,搜索用时 171 毫秒
51.
52.
Reviews in Environmental Science and Bio/Technology - The growing and pervasive presence of plastic pollution has attracted considerable interest in recent years, especially small...  相似文献   
53.
54.
55.
Apoptosis‐inducing protein of 56 kDa (AIP56) is a major virulence factor of Photobacterium damselae subsp. piscicida, a gram‐negative pathogen that infects warm water fish species worldwide and causes serious economic losses in aquacultures. AIP56 is a single‐chain AB toxin composed by two domains connected by an unstructured linker peptide flanked by two cysteine residues that form a disulphide bond. The A domain comprises a zinc‐metalloprotease moiety that cleaves the NF‐kB p65, and the B domain is involved in binding and internalisation of the toxin into susceptible cells. Previous experiments suggested that disruption of AIP56 disulphide bond partially compromised toxicity, but conclusive evidences supporting the importance of that bond in intoxication were lacking. Here, we show that although the disulphide bond of AIP56 is dispensable for receptor recognition, endocytosis, and membrane interaction, it needs to be intact for efficient translocation of the toxin into the cytosol. We also show that the host cell thioredoxin reductase‐thioredoxin system is involved in AIP56 intoxication by reducing the disulphide bond of the toxin at the cytosol. The present study contributes to a better understanding of the molecular mechanisms operating during AIP56 intoxication and reveals common features shared with other AB toxins.  相似文献   
56.
Abstract

Many studies describe the advantages of using hydrophobic particles on lipase immobilisation. However, many of these works neglect the effect of other variables of the supports, such as specific area and porosity, on the biocatalyst performance, and do not evaluate the influence of the hydrophobicity level of the particles on the biocatalysts’ activity as a single variable. Thus, the focus of the present work was to evaluate the effect of the hydrophobicity degree of polymeric particles on the biocatalysts’ activities, mitigating the influence of other variables. The study was divided into two steps. Firstly, distinct particles, exhibiting different composition and hydrophobicity levels, were used for the immobilization of a commercial lipase B from Candida antarctica (CAL-B). Then, distinct core-shell polymeric particles presenting different functional compounds on the surface were produced, using as comonomers styrene, divinylbenzene, 1-octene, vinylbenzoate and cardanol. Such particles were subsequently used for CAL-B immobilisation and the performance of the biocatalysts was evaluated on hydrolysis (using p-nitrophenyl laurate, as substrate) and esterification (using ethanol and oleic acid, as substrate) reactions. Based on the screening step, it was observed that for non-porous particles the correlation coefficients between the hydrophobicity level of the supports and the biocatalysts performance, for both hydrolysis and esterification reactions, were very low (0.32 and 0.45, respectively). It highlights that there was no significant correlation between these variables and that, probably, the chemical composition of the polymeric chains affects more significantly the biocatalyst performance. Then, analysing the subsequent stage, it was observed that small changes in the surface composition of the core-shell particles result in significant changes on the textural properties of the supports (specific area ranging from 1.2?m2.g?1 to 18.3?m2.g?1; and contact angles ranging from 71° (hydrophilic particles) to 92° (hydrophobic supports) when polymer films were put in contact with water). Such particles were also employed on CAL-B immobilization and it was noticed that higher correlation coefficients were achieved for hydrolysis (ρ?=?0.53) and esterification (ρ?=?0.74) reactions. Therefore, it is shown that the hydrophobicity degree of such supports starts to affect more effectively the biocatalysts performance when other textural features of the supports become more significant, such as specific area and porosity.  相似文献   
57.
58.
Lectins are a group of proteins of non‐immune origin recognized for their ability to bind reversibly to carbohydrates. Researchers have been intrigued by oligosaccharides and glycoconjugates for their involvement as mediators of complex cellular events and then many biotechnological applications of lectins are based on glycocode decoding and their activities. Here, we report a structural and biological study of a ConA‐like mannose/glucose‐specific lectin from Canavalia bonariensis seeds, CaBo. More specifically, we evaluate the binding of CaBo with α‐methyl‐D‐mannoside (MMA) and mannose‐1,3‐α‐D‐mannose (M13) and the resultant in vivo effects on a rat model of acute inflammation. A virtual screening was also carried out to cover a larger number of possible bindings of CaBo. In silico analysis demonstrated the stability of CaBo interaction with mannose‐type ligands, and the lectin was able to induce acute inflammation in rats with the participation of the carbohydrate recognition domain (CRD) and histamine release. These results confirm the ability of CaBo to interact with hybrid and high‐mannose N‐glycans, supporting the hypothesis that CaBo's biological activity occurs primarily through its interaction with cell surface glycosylated receptors.  相似文献   
59.
Despite early reperfusion, patients with ST segment elevation myocardial infarction (STEMI) may present large myocardial necrosis and significant impairment of ventricular function. The present study aimed to evaluate the role of subtypes of B lymphocytes and related cytokines in the infarcted mass and left ventricular ejection fraction obtained by cardiac magnetic resonance imaging performed after 30 days of STEMI. This prospective study included 120 subjects with STEMI submitted to pharmacoinvasive strategy. Blood samples were collected in subjects in the first (D1) and 30th (D30) days post STEMI. The amount of CD11b+ B1 lymphocytes (cells/ml) at D1 were related to the infarcted mass (rho = 0.43; P=0.033), measured by cardiac MRI at D30. These B1 cells were associated with CD4+ T lymphocytes at D1 and D30, while B2 classic lymphocytes at day 30 were related to left ventricular ejection fraction (LVEF). Higher titers of circulating IL-4 and IL-10 were observed at D30 versus D1 (P=0.013 and P<0.001, respectively). Titers of IL-6 at D1 were associated with infarcted mass (rho = 0.41, P<0.001) and inversely related to LVEF (rho = −0.38, P<0.001). After multiple linear regression analysis, high-sensitivity troponin T and IL-6 collected at day 1 were independent predictors of infarcted mass and, at day 30, only HDL-C. Regarding LVEF, high-sensitivity troponin T and high-sensitivity C-reactive protein were independent predictors at day 1, and B2 classic lymphocytes, at day 30. In subjects with STEMI, despite early reperfusion, the amount of infarcted mass and ventricular performance were related to inflammatory responses triggered by circulating B lymphocytes.  相似文献   
60.
Journal of Bioenergetics and Biomembranes - S-adenosylmethionine (AdoMet) predominantly accumulates in tissues and biological fluids of patients affected by liver dysmethylating diseases,...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号