首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1786篇
  免费   163篇
  2023年   8篇
  2022年   5篇
  2021年   31篇
  2020年   20篇
  2019年   33篇
  2018年   31篇
  2017年   38篇
  2016年   60篇
  2015年   113篇
  2014年   118篇
  2013年   142篇
  2012年   149篇
  2011年   150篇
  2010年   99篇
  2009年   79篇
  2008年   123篇
  2007年   87篇
  2006年   84篇
  2005年   64篇
  2004年   64篇
  2003年   76篇
  2002年   60篇
  2001年   14篇
  2000年   9篇
  1999年   21篇
  1998年   28篇
  1997年   13篇
  1996年   14篇
  1995年   20篇
  1994年   14篇
  1993年   8篇
  1992年   21篇
  1991年   11篇
  1990年   17篇
  1989年   11篇
  1988年   11篇
  1987年   10篇
  1986年   11篇
  1985年   6篇
  1984年   10篇
  1983年   6篇
  1982年   8篇
  1981年   10篇
  1980年   7篇
  1979年   4篇
  1976年   8篇
  1974年   4篇
  1972年   5篇
  1971年   4篇
  1968年   2篇
排序方式: 共有1949条查询结果,搜索用时 15 毫秒
91.
Protein Phosphatase type 2A (PP2A) represents a family of holoenzyme complexes with diverse biological activities. Specific holoenzyme complexes are thought to be deregulated during oncogenic transformation and oncogene-induced signaling. Since most studies on the role of this phosphatase family have relied on the use of generic PP2A inhibitors, the contribution of individual PP2A holoenzyme complexes in PP2A-controlled signaling pathways is largely unclear. To gain insight into this, we have constructed a set of shRNA vectors targeting the individual PP2A regulatory subunits for suppression by RNA interference. Here, we identify PR55γ and PR55δ as inhibitors of c-Jun NH2-terminal kinase (JNK) activation by UV irradiation. We show that PR55γ binds c-SRC and modulates the phosphorylation of serine 12 of c-SRC, a residue we demonstrate to be required for JNK activation by c-SRC. We also find that the physical interaction between PR55γ and c-SRC is sensitive to UV irradiation. Our data reveal a novel mechanism of c-SRC regulation whereby in response to stress c-SRC activity is regulated, at least in part, through loss of the interaction with its inhibitor, PR55γ.  相似文献   
92.
Position determination in biological systems is often achieved through protein concentration gradients. Measuring the local concentration of such a protein with a spatially varying distribution allows the measurement of position within the system. For these systems to work effectively, position determination must be robust to noise. Here, we calculate fundamental limits to the precision of position determination by concentration gradients due to unavoidable biochemical noise perturbing the gradients. We focus on gradient proteins with first-order reaction kinetics. Systems of this type have been experimentally characterised in both developmental and cell biology settings. For a single gradient we show that, through time-averaging, great precision potentially can be achieved even with very low protein copy numbers. As a second example, we investigate the ability of a system with oppositely directed gradients to find its centre. With this mechanism, positional precision close to the centre improves more slowly with increasing averaging time, and so longer averaging times or higher copy numbers are required for high precision. For both single and double gradients, we demonstrate the existence of optimal length scales for the gradients for which precision is maximized, as well as analyze how precision depends on the size of the concentration-measuring apparatus. These results provide fundamental constraints on the positional precision supplied by concentration gradients in various contexts, including both in developmental biology and also within a single cell.  相似文献   
93.
94.
95.
Journal of Mathematical Biology - In this paper we consider Susceptible $$\rightarrow $$ Infectious $$\rightarrow $$ Recovered (SIR) epidemics on random graphs with clustering. To incorporate group...  相似文献   
96.
97.
Robledo R  Bender P  Leonard J  Zhu B  Osoegawa K  de Jong P  Xu X  Yao Z  Roe B 《Genomics》2004,84(4):678-685
We analyzed genomes of nonhuman primates to determine the ancestral state of a 9.1-kb insertion/deletion polymorphism, located on human chromosome 22. The 9.1-kb+ allele was found in 16 chimpanzees, 3 bonobos, and 2 Bornean orangutans; however, 9 chimpanzees and 6 Sumatran orangutans showed neither the 9.1-kb+ nor the 9.1-kb- allele, but a novel allele, termed 9.1-kbnull. A clone from a chimpanzee BAC library carrying the 9.1-kbnull allele was sequenced: the BAC DNA aligns with the human chromosome 22 reference sequence except for a 75-kb region, suggesting that the 9.1-kbnull allele originated from a deletion. Furthermore, the 9.1-kb+ chromosomes of chimpanzees and bonobos contain a 1030-nucleotide sequence, absent in humans, that may result from a retro-transposition insertion in their common ancestor. Our results provide additional evidence that human chromosome 22 has undergone multiple small-scale and large-scale insertions and deletions since sharing a common ancestor with other primates.  相似文献   
98.
The supplementary eye field (SEF) is a region within medial frontal cortex that integrates complex visuospatial information and controls eye-head gaze shifts. Here, we test if the SEF encodes desired gaze directions in a simple retinal (eye-centered) frame, such as the superior colliculus, or in some other, more complex frame. We electrically stimulated 55 SEF sites in two head-unrestrained monkeys to evoke 3D eye-head gaze shifts and then mathematically rotated these trajectories into various reference frames. Each stimulation site specified a specific spatial goal when plotted in its intrinsic frame. These intrinsic frames varied site by site, in a continuum from eye-, to head-, to space/body-centered coding schemes. This variety of coding schemes provides the SEF with a unique potential for implementing arbitrary reference frame transformations.  相似文献   
99.
Collagen degradation is suggested to be responsible for long-term contractile dysfunction in different cardiomyopathies, but the effects of acute and specific collagen type I removal (main type in the heart muscle) on tension have not been studied. We determined the diastolic and developed tension length relations in isometric contracting perfused rat papillary muscles (perfusion pressure 60 cmH(2)O) before and after acute and specific removal of small collagen struts with the use of purified collagenase type I. At 95% of the maximal length (95%L(max)), diastolic tension increased 20.4 +/- 8.1% (P < 0.05, n = 6) and developed tension increased 15.0 +/- 6.7% after collagenase treatment compared with time controls. Treatment increased the diastolic muscle diameter by 7.1 +/- 3.4% at 95%L(max), whereas the change in diameter due to contraction was not changed. Diastolic coronary flow and normalized coronary arterial flow impediment did not change after collagenase treatment. Electron microscopy revealed that the number of small collagen struts, interconnecting myocytes, and capillaries was reduced to approximately 32% after treatment. We conclude that removal of the small collagen struts by acute and specific collagen type I degradation increases diastolic and developed tension in perfused papillary muscle. We suggest that diastolic tension is increased due to edema, whereas developed tension is increased because the removal of the struts poses a lower lateral load on the cardiac myocytes, allowing more myocyte thickening.  相似文献   
100.
Insulin exerts both NO-dependent vasodilator and endothelin-dependent vasoconstrictor effects on skeletal muscle arterioles. The intracellular enzymes 1-phosphatidylinositol 3-kinase (PI3-kinase) and Akt have been shown to mediate the vasodilator effects of insulin, but the signaling molecules involved in the vasoconstrictor effects of insulin in these arterioles are unknown. Our objective was to identify intracellular mediators of acute vasoconstrictor effects of insulin on skeletal muscle arterioles. Rat cremaster first-order arterioles (n=40) were isolated, and vasoreactivity to insulin was studied using a pressure myograph. Insulin induced dose-dependent vasoconstriction of skeletal muscle arterioles (up to -22 +/- 3% of basal diameter; P <0.05) during PI3-kinase inhibition with wortmannin (50 nmol/l). Insulin-induced vasoconstriction was abolished by inhibition of extracellular signal-regulated kinase 1/2 (ERK1/2) with PD-98059 (40 micromol/l). In addition, inhibition of ERK1/2 without PI3-kinase inhibition uncovered insulin-mediated vasodilatation in skeletal muscle arterioles (up to 37 +/- 10% of baseline diameter; P <0.05). Effects of insulin on ERK1/2 activation in arterioles were then investigated by Western blot analysis. Insulin induced a transient 2.4-fold increase in ERK1/2 phosphorylation (maximal at approximately 15 min) in skeletal muscle arterioles (P <0.05). Removal of the arteriolar endothelium abolished insulin-induced vasoconstriction, which suggests that activation of ERK1/2 in endothelial cells is involved in acute insulin-mediated vasoconstriction. To investigate this, acute effects of insulin on ERK1/2 phosphorylation were studied in human microvascular endothelial cells. In support of the findings in skeletal muscle arterioles, insulin induced a 1.9-fold increase in ERK1/2 phosphorylation (maximal at approximately 15 min) in microvascular endothelial cells (P <0.05). We conclude that acute vasoconstrictor effects of insulin in skeletal muscle arterioles are mediated by activation of ERK1/2 in endothelium. This ERK1/2-mediated vasoconstrictor effect antagonizes insulin-induced, PI3-kinase-dependent vasodilatation in skeletal muscle arterioles. These findings provide a novel mechanism by which insulin may determine blood flow and glucose disposal in skeletal muscle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号