首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9668篇
  免费   792篇
  国内免费   9篇
  10469篇
  2023年   42篇
  2022年   79篇
  2021年   170篇
  2020年   111篇
  2019年   109篇
  2018年   160篇
  2017年   128篇
  2016年   269篇
  2015年   411篇
  2014年   499篇
  2013年   624篇
  2012年   773篇
  2011年   757篇
  2010年   449篇
  2009年   440篇
  2008年   595篇
  2007年   644篇
  2006年   609篇
  2005年   527篇
  2004年   534篇
  2003年   511篇
  2002年   508篇
  2001年   108篇
  2000年   80篇
  1999年   115篇
  1998年   147篇
  1997年   103篇
  1996年   94篇
  1995年   104篇
  1994年   87篇
  1993年   82篇
  1992年   89篇
  1991年   39篇
  1990年   48篇
  1989年   34篇
  1988年   37篇
  1987年   23篇
  1986年   33篇
  1985年   31篇
  1984年   27篇
  1983年   27篇
  1982年   37篇
  1981年   29篇
  1980年   22篇
  1979年   19篇
  1978年   11篇
  1977年   24篇
  1976年   17篇
  1974年   8篇
  1973年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
We designed bidentate ligands to target PDZ domains through two binding sites: site S0, delimited by the GLGF loop, and site S1, a zone situated around loop β(B)/β(C). A molecular docking study allowed us to design a generic S0 binder, to which was attached a variable size linker, itself linked to an amino acid aimed to interact with the S1 site of PDZ domains. A series of 15 novel bidentate ligands was prepared in 6-11 steps in good overall yield (24-43%). Some of these ligands showed an inhibitory activity against serotonin 5-HT2A receptor/PSD-95 interaction. This was assessed by pull-down assay using a synthetic decapeptide corresponding to the C-terminal residues of the receptor as a bait.  相似文献   
992.
The study of the proteins that bind to telomeric DNA in mammals has provided a deep understanding of the mechanisms involved in chromosome-end protection. However, very little is known on the binding of these proteins to nontelomeric DNA sequences. The TTAGGG DNA repeat proteins 1 and 2 (TRF1 and TRF2) bind to mammalian telomeres as part of the shelterin complex and are essential for maintaining chromosome end stability. In this study, we combined chromatin immunoprecipitation with high-throughput sequencing to map at high sensitivity and resolution the human chromosomal sites to which TRF1 and TRF2 bind. While most of the identified sequences correspond to telomeric regions, we showed that these two proteins also bind to extratelomeric sites. The vast majority of these extratelomeric sites contains interstitial telomeric sequences (or ITSs). However, we also identified non-ITS sites, which correspond to centromeric and pericentromeric satellite DNA. Interestingly, the TRF-binding sites are often located in the proximity of genes or within introns. We propose that TRF1 and TRF2 couple the functional state of telomeres to the long-range organization of chromosomes and gene regulation networks by binding to extratelomeric sequences.  相似文献   
993.
Hierarchy and plasticity in the crypt: back to the drawing board   总被引:1,自引:0,他引:1  
Legraverend C  Jay P 《Cell research》2011,21(12):1652-1654
  相似文献   
994.
α-Cyclodextrin was transformed in a cationic unit after per substitution with histidine (His-α-CD) and lysine (Lys-α-CD) molecules on the primary face. His-α-CD and Lys-α-CD were used to form electrostatic complexes (CDplexes) with a plasmid DNA encoding luciferase gene, and the ability of CDplexes to transfect mammalian cells was examined using HEK293-T7 cells. The luciferase activity in cells transfected with His-α-CDplexes was 8-fold higher than that obtained Lys-α-CDplexes. When the transfection was carried out in the presence of chloroquine, the luciferase activity with His-α-CDplexes and Lys-α-CDplexes increased 6 and 25 times, respectively. The lower enhancement with His-α-CDplexes confirmed that histidine induced a proton sponge effect inside endosomes upon imidazole protonation, favoring DNA delivery in the cytosol. At the same time, we found that the condensation of DNA with His-α-CD was unexpectedly stronger than that obtained with the lysyl-α-CD counterpart. Moreover, it was as strong as that observed with high molecular weight polylysine. NMR (ROESY and DOSY) investigations in the absence of DNA showed that an inclusion complex is formed between the imidazole ring of histidine and the hydrophobic cavity of CD but no His-α-CD polymers can be formed by intermolecular interactions. These results suggest that intermolecular interactions between imidazole and His-α-CD cavity could be involved to form supramolecular assemblies in the presence of a DNA scaffold leading to DNA condensation into low diameter particles.  相似文献   
995.
Diblock copolymers composed of poly(epsilon-caprolactone) (PCL) and poly(N,N-dimethylamino-2-ethyl methacrylate) (PDMAEMA), or methoxy polyethylene glycol(PEG), were synthesized via a combination of ring-opening polymerization and atom-transfer radical polymerization in order to prepare polymeric nanoparticles as an antifungal drug carrier. Amphotericin B (AmB), a natural antibiotic, was incorporated into the polymeric nanoparticles. The physical properties of AmB-incorporated polymeric nanoparticles with PCL-b-PDMAEMA and PCL-b-PEG were studied in relation to morphology and particle size. In the aggregation state study, AmB-incorporated PCL-b- PDMAEMA nanoparticles exhibited a monomeric state pattern of free AmB, whereas AmB-incorporated PCL-b- PEG nanoparticles displayed an aggregated pattern. In in vitro hemolysis tests with human red blood cells, AmBincorporated PCL-b-PDMAEMA nanoparticles were seen to be 10 times less cytotoxic than free AmB (5 microgram/ml). In addition, an improved antifungal activity of AmBincorporated polymeric nanoparticles was observed through antifungal activity tests using Candida albicans, whereas polymeric nanoparticles themselves were seen not to affect activity. Finally, in vitro AmB release studies were conducted, proving the potential of AmB-incorporated PCL-b-PDMAEMA nanoparticles as a new formulation candidate for AmB.  相似文献   
996.
997.
998.
999.
Adult stem cells are critical for maintaining cellular homeostasis throughout life, yet the effects of age on their regenerative capacity are poorly understood. All lymphoid and myeloid blood cell lineages are continuously generated from hematopoietic stem cells present in human bone marrow. With age, significant changes in the function and composition of mature blood cells are observed. In this study, we report that age-related changes also occur in the human hematopoietic stem cell compartment. We find that the proportion of multipotent CD34(+) CD38(-) cells increases in the bone marrow of elderly (>70 years) individuals. CD34(+) CD38(+) CD90(-) CD45RA(+/-) CD10(-) and CD34(+) CD33(+) myeloid progenitors persist at the same level in the bone marrow, while the frequency of early CD34(+) CD38(+) CD90(-) CD45RA(+) CD10(+) and committed CD34(+) CD19(+) B-lymphoid progenitors decreases with age. In contrast to mice models of aging, transplantation experiments with immunodeficient NOD/SCID/IL-2Rγ null (NSG) mice showed that the frequency of NSG repopulating cells does not change significantly with age, and there is a decrease in myeloid lineage reconstitution. An age-related decrease in the capacity of CD34(+) cells to generate myeloid cells was also seen in colony-forming assays in vitro. Thus, with increasing age, human hematopoietic stem/progenitor cells undergo quantitative changes as well as functional modifications.  相似文献   
1000.
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease associated with potentially debilitating joint inflammation, as well as altered skeletal bone metabolism and co-morbid conditions. Early diagnosis and aggressive treatment to control disease activity offers the highest likelihood of preserving function and preventing disability. Joint inflammation is characterized by synovitis, osteitis, and/or peri-articular osteopenia, often accompanied by development of subchondral bone erosions, as well as progressive joint space narrowing. Biochemical markers of joint cartilage and bone degradation may enable timely detection and assessment of ongoing joint damage, and their use in facilitating treatment strategies is under investigation. Early detection of joint damage may be assisted by the characterization of biochemical markers that identify patients whose joint damage is progressing rapidly and who are thus most in need of aggressive treatment, and that, alone or in combination, identify those individuals who are likely to respond best to a potential treatment, both in terms of limiting joint damage and relieving symptoms. The aims of this review are to describe currently available biochemical markers of joint metabolism in relation to the pathobiology of joint damage and systemic bone loss in RA; to assess the limitations of, and need for additional, novel biochemical markers in RA and other rheumatic diseases, and the strategies used for assay development; and to examine the feasibility of advancement of personalized health care using biochemical markers to select therapeutic agents to which a patient is most likely to respond.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号