首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2645篇
  免费   254篇
  国内免费   1篇
  2023年   16篇
  2022年   26篇
  2021年   90篇
  2020年   37篇
  2019年   66篇
  2018年   82篇
  2017年   62篇
  2016年   107篇
  2015年   179篇
  2014年   215篇
  2013年   202篇
  2012年   263篇
  2011年   211篇
  2010年   151篇
  2009年   130篇
  2008年   124篇
  2007年   146篇
  2006年   135篇
  2005年   116篇
  2004年   81篇
  2003年   85篇
  2002年   61篇
  2001年   23篇
  2000年   24篇
  1999年   27篇
  1998年   16篇
  1997年   5篇
  1996年   7篇
  1994年   9篇
  1993年   12篇
  1992年   10篇
  1991年   7篇
  1989年   5篇
  1988年   7篇
  1987年   7篇
  1986年   5篇
  1985年   9篇
  1984年   16篇
  1983年   4篇
  1982年   6篇
  1981年   9篇
  1980年   5篇
  1979年   10篇
  1978年   4篇
  1977年   7篇
  1976年   5篇
  1974年   6篇
  1971年   9篇
  1970年   6篇
  1960年   4篇
排序方式: 共有2900条查询结果,搜索用时 15 毫秒
61.
We present a global stability analysis of two-compartment models of a hierarchical cell production system with a nonlinear regulatory feedback loop. The models describe cell differentiation processes with the stem cell division rate or the self-renewal fraction regulated by the number of mature cells. The two-compartment systems constitute a basic version of the multicompartment models proposed recently by Marciniak-Czochra and collaborators [25] to investigate the dynamics of the hematopoietic system. Using global stability analysis, we compare different regulatory mechanisms. For both models, we show that there exists a unique positive equilibrium that is globally asymptotically stable if and only if the respective reproduction numbers exceed one. The proof is based on constructing Lyapunov functions, which are appropriate to handle the specific nonlinearities of the model. Additionally, we propose a new model to test biological hypothesis on the regulation of the fraction of differentiating cells. We show that such regulatory mechanism is incapable of maintaining homeostasis and leads to unbounded cell growth. Potential biological implications are discussed.  相似文献   
62.
The fossil ATD6-69 from Atapuerca, Spain, dated to ca. 900 ka (thousands of years ago) has been suggested to mark the earliest appearance of modern human facial features. However, this specimen is a subadult and the interpretation of its morphology remains controversial, because it is unclear how developmental shape changes would affect the features that link ATD6-69 to modern humans. Here we analyze ATD6-69 in an evolutionary and developmental context. Our modern human sample comprises cross-sectional growth series from four populations. The fossil sample covers human specimens from the Pleistocene to the Upper Paleolithic, and includes several subadult Early Pleistocene humans and Neanderthals. We digitized landmarks and semilandmarks on surface and CT scans and analyzed the Procrustes shape coordinates using multivariate statistics. Ontogenetic allometric trajectories and developmental simulations were employed in order to identify growth patterns and to visualize potential adult shapes of ATD6-69. We show that facial differences between modern and archaic humans are not exclusively allometric. We find that while postnatal growth further accentuates the differences in facial features between Neanderthals and modern humans, those features that have been suggested to link ATD6-69's morphology to modern humans would not have been significantly altered in the course of subsequent development. In particular, the infraorbital depression on this specimen would have persisted into adulthood. However, many of the facial features that ATD6-69 shares with modern humans can be considered to be part of a generalized pattern of facial architecture. Our results present a complex picture regarding the polarity of facial features and demonstrate that some modern human-like facial morphology is intermittently present in Middle Pleistocene humans. We suggest that some of the facial features that characterize recent modern humans may have developed multiple times in human evolution.  相似文献   
63.
Cardiac triacylglycerol (TG) catabolism critically depends on the TG hydrolytic activity of adipose triglyceride lipase (ATGL). Perilipin 5 (Plin5) is expressed in cardiac muscle (CM) and has been shown to interact with ATGL and its coactivator comparative gene identification-58 (CGI-58). Furthermore, ectopic Plin5 expression increases cellular TG content and Plin5-deficient mice exhibit reduced cardiac TG levels. In this study we show that mice with cardiac muscle-specific overexpression of perilipin 5 (CM-Plin5) massively accumulate TG in CM, which is accompanied by moderately reduced fatty acid (FA) oxidizing gene expression levels. Cardiac lipid droplet (LD) preparations from CM of CM-Plin5 mice showed reduced ATGL- and hormone-sensitive lipase-mediated TG mobilization implying that Plin5 overexpression restricts cardiac lipolysis via the formation of a lipolytic barrier. To test this hypothesis, we analyzed TG hydrolytic activities in preparations of Plin5-, ATGL-, and CGI-58-transfected cells. In vitro ATGL-mediated TG hydrolysis of an artificial micellar TG substrate was not inhibited by the presence of Plin5, whereas Plin5-coated LDs were resistant toward ATGL-mediated TG catabolism. These findings strongly suggest that Plin5 functions as a lipolytic barrier to protect the cardiac TG pool from uncontrolled TG mobilization and the excessive release of free FAs.  相似文献   
64.
In the bacterial degradation of steroid compounds, the enzymes initiating the breakdown of the steroid rings are well known, while the reactions for degrading steroid side chains attached to C-17 are largely unknown. A recent in vitro analysis with Pseudomonas sp. strain Chol1 has shown that the degradation of the C5 acyl side chain of the C24 steroid compound cholate involves the C22 intermediate 7α,12α-dihydroxy-3-oxopregna-1,4-diene-20S-carbaldehyde (DHOPDCA) with a terminal aldehyde group. In the present study, candidate genes with plausible functions in the formation and degradation of this aldehyde were identified. All deletion mutants were defective in growth with cholate but could transform it into dead-end metabolites. A mutant with a deletion of the shy gene, encoding a putative enoyl coenzyme A (CoA) hydratase, accumulated the C24 steroid (22E)-7α,12α-dihydroxy-3-oxochola-1,4,22-triene-24-oate (DHOCTO). Deletion of the sal gene, formerly annotated as the steroid ketothiolase gene skt, resulted in the accumulation of 7α,12α,22-trihydroxy-3-oxochola-1,4-diene-24-oate (THOCDO). In cell extracts of strain Chol1, THOCDO was converted into DHOPDCA in a coenzyme A- and ATP-dependent reaction. A sad deletion mutant accumulated DHOPDCA, and expression in Escherichia coli revealed that sad encodes an aldehyde dehydrogenase for oxidizing DHOPDCA to the corresponding acid 7α,12α-dihydroxy-3-oxopregna-1,4-diene-20-carboxylate (DHOPDC) with NAD+ as the electron acceptor. These results clearly show that the degradation of the acyl side chain of cholate proceeds via an aldolytic cleavage of an acetyl residue; they exclude a thiolytic cleavage for this reaction step. Based on these results and on sequence alignments with predicted aldolases from other bacteria, we conclude that the enzyme encoded by sal catalyzes this aldolytic cleavage.  相似文献   
65.
66.
Secoisolariciresinol diglucosides (SDGs) (S,S)-SDG-1 (major isomer in flaxseed) and (R,R)-SDG-2 (minor isomer in flaxseed) were synthesized from vanillin via secoisolariciresinol (6) and glucosyl donor 7 through a concise route that involved chromatographic separation of diastereomeric diglucoside derivatives (S,S)-8 and (R,R)-9. Synthetic (S,S)-SDG-1 and (R,R)-SDG-2 exhibited potent antioxidant properties (EC50 = 292.17 ± 27.71 μM and 331.94 ± 21.21 μM, respectively), which compared well with that of natural (S,S)-SDG-1 (EC50 = 275.24 ± 13.15 μM). These values are significantly lower than those of ascorbic acid (EC50 = 1129.32 ± 88.79 μM) and α-tocopherol (EC50 = 944.62 ± 148.00 μM). Compounds (S,S)-SDG-1 and (R,R)-SDG-2 also demonstrated powerful scavenging activities against hydroxyl [natural (S,S)-SDG-1: 3.68 ± 0.27; synthetic (S,S)-SDG-1: 2.09 ± 0.16; synthetic (R,R)-SDG-2: 1.96 ± 0.27], peroxyl [natural (S,S)-SDG-1: 2.55 ± 0.11; synthetic (S,S)-SDG-1: 2.20 ± 0.10; synthetic (R,R)-SDG-2: 3.03 ± 0.04] and DPPH [natural (S,S)-SDG-1: EC50 = 83.94 ± 2.80 μM; synthetic (S,S)-SDG-1: EC50 = 157.54 ± 21.30 μM; synthetic (R,R)-SDG-2: EC50 = 123.63 ± 8.67 μM] radicals. These results confirm previous studies with naturally occurring (S,S)-SDG-1 and establish both (S,S)-SDG-1 and (R,R)-SDG-2 as potent antioxidants and free radical scavengers for potential in vivo use.  相似文献   
67.
Offspring solicit food from their parents through begging signals. Nestling skin and flange coloration are begging signals that appear to convey information about nestling need or condition, and several experiments have shown that modifications of nestling coloration affect parental allocation decisions. However, it is important to examine the short‐term changes in these signalling components in response to food constraints since such dynamic changes are required for signals to indicate condition or need. Using a food deprivation experiment, we tested whether flange and skin reflectance in European starling Sturnus vulgaris nestlings change after a three‐hour interval. We investigated whether flange and skin reflectance changed according to the predictions arising from the ‘signal of quality’ or ‘signal of need’ hypotheses on the function of begging signals. We found that flange carotenoid and UV reflectance changed according to the signal of quality hypothesis with nestlings in good condition increasing their signal expression in response to the food deprivation, whereas those in poor condition decreased their signal expression. With the use of vision modelling, we show that changes in flange reflectance are detectable by starling parents. In contrast, we found a correlation going in the opposite direction for changes in skin UV reflectance. Nestlings with low lipid reserves increased their reflectance compared to nestlings with high reserves. However, vision modelling showed that short‐term changes in skin UV reflectance are not large enough to be detectable by the parents. Our study shows that flange carotenoid and UV reflectance are dynamic components of begging with short‐term variations that can be used by parents as signals of nestling quality.  相似文献   
68.
In animal communication, elaborate signals have been shown to be under sexual selection and often to reliably indicate a signaler's quality, condition, or motivation. For instance, the performance of physically challenging signals such as trills – i.e. rapidly repeated elements of broad frequency bandwidth – is considered to reflect signaler quality. Nightingales Luscinia megarhynchos are renowned for their outstanding song repertoire sizes, and most songs include a variety of complex trills. In the present study, we examined whether performance of trills can reliably reflect male quality. We show that vocal performance of trills predicts the age of a male. Older males sang trills that were closer to the performance limit than did younger males. Moreover, males with narrower beaks sang more consistent trills than did males with wider beaks. Vocal performance of trills, however, did not significantly predict other measures of biometric quality such as body size or body condition of the males. The findings suggest that receivers could benefit from the predictive value of physically demanding song traits in assessing age as an important quality component of potential mates or rivals. Particularly in species with high singing versatility, signaler assessment based on readily assessable structures may be adaptive, as this will allow receivers to quickly gather relevant information about the singer without attending to the full song repertoire.  相似文献   
69.
ABSTRACT

Members of the casein kinase 1 (CK1) family are key regulators in numerous cellular signal transduction pathways and in order to prevent the development of certain diseases, CK1 kinase activity needs to be tightly regulated. Modulation of kinase activity by site-specific phosphorylation within the C-terminal regulatory domain of CK1δ has already been shown for several cellular kinases. By using biochemical methods, we now identified residues T161, T174, T176, and S181 within the kinase domain of CK1δ as target sites for checkpoint kinase 1 (Chk1). At least residues T176 and S181 show full conservation among CK1δ orthologues from different eukaryotic species. Enzyme kinetic analysis furthermore led to the hypothesis that site-specific phosphorylation within the kinase domain finally contributes to fine-tuning of CK1δ kinase activity. These data provide a basis for the extension of our knowledge about the role of site-specific phosphorylation for regulation of CK1δ and associated signal transduction pathways.  相似文献   
70.
Animals are colonized by complex bacterial communities. The processes controlling community membership and influencing the establishment of the microbial ecosystem during development are poorly understood. Here we aimed to explore the assembly of bacterial communities in Hydra with the broader goal of elucidating the general rules that determine the temporal progression of bacterial colonization of animal epithelia. We profiled the microbial communities in polyps at various time points after hatching in four replicates. The composition and temporal patterns of the bacterial communities were strikingly similar in all replicates. Distinct features included high diversity of community profiles in the first week, a remarkable but transient adult-like profile 2 weeks after hatching, followed by progressive emergence of a stable adult-like pattern characterized by low species diversity and the preponderance of the Betaproteobacterium Curvibacter. Intriguingly, this process displayed important parallels to the assembly of human fecal communities after birth. In addition, a mathematical modeling approach was used to uncover the organizational principles of this colonization process, suggesting that both, local environmental or host-derived factor(s) modulating the colonization rate, as well as frequency-dependent interactions of individual bacterial community members are important aspects in the emergence of a stable bacterial community at the end of development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号