首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2554篇
  免费   242篇
  国内免费   1篇
  2023年   16篇
  2022年   19篇
  2021年   89篇
  2020年   38篇
  2019年   65篇
  2018年   82篇
  2017年   62篇
  2016年   104篇
  2015年   176篇
  2014年   208篇
  2013年   197篇
  2012年   260篇
  2011年   208篇
  2010年   150篇
  2009年   127篇
  2008年   120篇
  2007年   142篇
  2006年   131篇
  2005年   111篇
  2004年   79篇
  2003年   83篇
  2002年   58篇
  2001年   21篇
  2000年   21篇
  1999年   23篇
  1998年   15篇
  1997年   4篇
  1996年   6篇
  1995年   4篇
  1994年   9篇
  1993年   11篇
  1992年   10篇
  1991年   6篇
  1989年   4篇
  1988年   4篇
  1987年   6篇
  1986年   4篇
  1985年   7篇
  1984年   13篇
  1982年   6篇
  1981年   5篇
  1980年   4篇
  1979年   9篇
  1977年   6篇
  1976年   5篇
  1974年   5篇
  1972年   3篇
  1971年   8篇
  1970年   6篇
  1960年   4篇
排序方式: 共有2797条查询结果,搜索用时 31 毫秒
81.
It was Darwin that noted the large intraspecific diversity of the goose barnacle Lepas Linnaeus, 1758 and thought about distinct regional varieties. Today, biogeographic compartmentation is known from marine species, but data from globally occurring species remain scarce. We analysed inter‐ and intraspecific divergence within the epipelagic rafter Lepas from tropical and temperate oceans by means of two mitochondrial and one nuclear DNA marker. Besides phylogenetic relations, we resolved biogeography and controlling factors. Inhabiting the Southern Hemisphere, Lepas australis Darwin, 1851 shows separate populations from coastal Chile and from circum‐Antarctic waters, most probably related to temperature differences in the current systems. The cosmopolitan Lepas anatifera Linnaeus, 1758 displays four regional subgroups (coastal Chile, Northeast Pacific/Oregon, the Southern Hemisphere Indopacific, and the Atlantic), and a global group, which might be an ancestral stem group. The differentiation reflects vicariance effects rooted in geological history: the closure of the Neogene Tethys in the Middle East and at the Panama Isthmus, the installation of the cool Benguela Current, differing Pleistocene currents and temperatures, and modern current systems. The extreme ecological generalists Lepas anserifera Linnaeus, 1767 and Lepas pectinata Spengler, 1793 are not differentiated, and might represent true global species. In conclusion, compartmentation of the oceans acts at the species level according to ecospace limits. For Lepas, the multitude of barriers favours allopatric speciation.  相似文献   
82.
83.
84.
85.
86.
87.
Functional traits, rather than taxonomic identity, determine the fitness of individuals in their environment: traits of marine organisms are therefore expected to vary across the global ocean as a function of the environment. Here, we quantify such spatial and seasonal variations based on extensive empirical data and present the first global biogeography of key traits (body size, feeding mode, relative offspring size and myelination) for pelagic copepods, the major group of marine zooplankton. We identify strong patterns with latitude, season and between ocean basins that are partially (c. 50%) explained by key environmental drivers. Body size, for example decreases with temperature, confirming the temperature‐size rule, but surprisingly also with productivity, possibly driven by food‐chain length and size‐selective predation. Patterns unrelated to environmental predictors may originate from phylogenetic clustering. Our maps can be used as a test‐bed for trait‐based mechanistic models and to inspire next‐generation biogeochemical models.  相似文献   
88.
Biomarker studies for metabolic disorders like diabetes mellitus (DM) are an important approach towards a better understanding of the underlying pathophysiological mechanisms of diseases (Roberts and Gerszten in Cell Metab 18:43–50, 2013; Wilson et al. in Proteome Res 4:591–598, 2005). Furthermore, screening of potential metabolic biomarkers opens the opportunity of early diagnosis as well as therapy and drug monitoring of metabolic disorders (Rhee et al. in J Clin Invest 10:1–10, 2011; Wang et al. in Nat Med 17:448–458, 2011; Wenk in Nat Rev Drug Discov 4:594–610, 2005). The aim of the present study was to develop methods for the quantitative determination of 74 potential metabolite biomarkers for DM and diabetic nephropathy (DN) in serum. Several studies have shown that the concentrations of many polar metabolites like amino or organic acids are changed in subjects suffering from diabetes (Wang et al. in Nat Med 17:448–458, 2011; Yuan et al. in J Chromatogr B 813:53–58, 2007). Analyzing polar analytes presents a challenge in liquid chromatography (LC) coupled with ESI–MS/MS (Gika et al. in J Sep Sci 31:1598–1608, 2008; Spagou et al. in J Sep Sci 33:716–727, 2010). Considering those reasons we decided to develop a specific HILIC–ESI–QqQ–MS/MS-method for quantitative determination of these polar metabolites. A subsequent method validation was carried out for both HILIC and RP chromatography with respect to the guidelines of the Food and Drug Administration (FDA in Food and Drug Administration: Guidance for industry, bioanalytical method validation, 2001). The HILIC and RP LC–MS methods were successfully validated. Furthermore, the HILIC method presented here was applied to serum samples of GIPRdn transgenic mice, a diabetic strain developing DN, and non transgenic littermate controls. Significant, diabetes-associated changes were observed for the concentrations of 21 out of 62 metabolites. The new methods described here accurately quantify 74 metabolites known to be regulated in diabetes, allowing for direct comparison between studies and laboratories. Thus, these methods may be highly adoptable in clinical research, providing a starting point for early diagnosis and metabolic screening.  相似文献   
89.
Correctly dosed physical activity is the basis of a vital and healthy life, but the measurement of physical activity is certainly rather empirical resulting in limited individual and custom activity recommendations. Certainly, very accurate three-dimensional models of the cardiovascular system exist, however, requiring the numeric solution of the Navier–Stokes equations of the flow in blood vessels. These models are suitable for the research of cardiac diseases, but computationally very expensive. Direct measurements are expensive and often not applicable outside laboratories. This paper offers a new approach to assess physical activity using thermodynamical systems and its leading quantity of entropy production which is a compromise between computation time and precise prediction of pressure, volume, and flow variables in blood vessels. Based on a simplified (one-dimensional) model of the cardiovascular system of the human body, we develop and evaluate a setup calculating entropy production of the heart to determine the intensity of human physical activity in a more precise way than previous parameters, e.g. frequently used energy considerations. The knowledge resulting from the precise real-time physical activity provides the basis for an intelligent human–technology interaction allowing to steadily adjust the degree of physical activity according to the actual individual performance level and thus to improve training and activity recommendations.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号