首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3701篇
  免费   449篇
  国内免费   1篇
  2022年   20篇
  2021年   99篇
  2020年   40篇
  2019年   78篇
  2018年   92篇
  2017年   78篇
  2016年   123篇
  2015年   200篇
  2014年   245篇
  2013年   241篇
  2012年   320篇
  2011年   260篇
  2010年   188篇
  2009年   151篇
  2008年   154篇
  2007年   184篇
  2006年   175篇
  2005年   145篇
  2004年   120篇
  2003年   126篇
  2002年   99篇
  2001年   55篇
  2000年   66篇
  1999年   53篇
  1998年   30篇
  1997年   27篇
  1996年   17篇
  1995年   18篇
  1994年   24篇
  1993年   26篇
  1992年   33篇
  1991年   39篇
  1990年   39篇
  1988年   19篇
  1987年   24篇
  1986年   23篇
  1985年   20篇
  1984年   33篇
  1982年   20篇
  1980年   20篇
  1979年   24篇
  1978年   20篇
  1977年   17篇
  1976年   17篇
  1975年   19篇
  1974年   30篇
  1973年   27篇
  1972年   26篇
  1971年   26篇
  1970年   24篇
排序方式: 共有4151条查询结果,搜索用时 203 毫秒
51.
Abstract: Parkinson's disease is characterized by massive degeneration of the melanized dopaminergic neurons in the substantia nigra. The functional capacity of the surviving nigral neurons is affected, as indicated by the subnormal levels of tyrosine hydroxylase (TH) mRNA in these neurons and the presence in the parkinsonian mesencephalon of melanized neurons lacking TH immunoreactivity. This is apparently in contradiction with the known overactivity of dopamine synthesis and release that occurs in the remaining dopaminergic terminals. To test the ability of the surviving neurons to express TH protein, a semiquantitative immunocytochemical method was developed. The relative amounts of TH were estimated with a computer-assisted image analysis system in the dopaminergic neurons of representative mesencephalic sections of control and parkinsonian brains and for comparison in brains from patients with Alzheimer's disease. In control brains, the mean TH content per neuron differed from one subject to another and between the different dopaminergic cell groups of the mesencephalon in the same subject. Within a given dopaminergic region, the level of TH was variable among neurons. In patients with Parkinson's disease, the ratio of TH protein content per neuron in the substantia nigra by reference to that of the central gray substance was reduced. In patients with Alzheimer's disease, the amount of TH was selectively reduced in the remaining dopaminergic neurons of the ventral tegmental area, a region characterized by a loss in dopaminergic neurons. The decrease in cellular TH content might therefore be related to the presence of the neurodegenerative process in the area considered. In patients with Parkinson's disease, the incapacity of the surviving neurons to express normal TH levels may reduce the efficiency of the hyperactivity mechanisms that develop in the remaining striatal dopaminergic terminals.  相似文献   
52.
Abstract: We developed a rapid and sensitive radioimmunohistochemical method for the quantification of tyrosine hydroxylase (TH) at both the anatomical and cellular level. Coronal tissue sections from fresh-frozen rat brains were incubated in the presence of a TH monoclonal antibody. The reaction was revealed with a 35S-labeled secondary antibody. TH content was quantified in catecholaminergic brain areas by measuring optical density on autoradiographic films or silver grain density on autoradiographic emulsion-coated sections. Regional TH concentrations determined in the locus ceruleus (LC), substantia nigra pars compacta (SNC), and ventral tegmental area (VTA) were significantly increased by 45% after reserpine treatment in the LC but unchanged in the SNC and VTA. Microscopic examination of TH radioimmunolabeling showed a heavy accumulation of silver grains over catecholaminergic cell bodies. In the LC, grain density per cell was heterogeneous and higher in the ventral than in the dorsal part of the structure. After reserpine treatment, TH levels were significantly increased (57%) in the neurons of the LC but not in those of the SNC or VTA. The data support the validity of this radioimmunohistochemical method as a tool for quantifying TH protein at the cellular level and they confirm that TH protein content is differentially regulated in noradrenergic and dopaminergic neurons in response to reserpine.  相似文献   
53.
54.
55.

Aim

Land use is the most pervasive driver of biodiversity loss. Predicting its impact on species richness (SR) is often based on indicators of habitat loss. However, the degradation of habitats, especially through land-use intensification, also affects species. Here, we evaluate whether an integrative metric of land-use intensity, the human appropriation of net primary production, is correlated with the decline of SR in used landscapes across the globe.

Location

Global.

Time period

Present.

Major taxa studied

Birds, mammals and amphibians.

Methods

Based on species range maps (spatial resolution: 20 km × 20 km) and an area-of-habitat approach, we calibrated a “species–energy model” by correlating the SR of three groups of vertebrates with net primary production and biogeographical covariables in “wilderness” areas (i.e., those where available energy is assumed to be still at pristine levels). We used this model to project the difference between pristine SR and the SR corresponding to the energy remaining in used landscapes (i.e., SR loss expected owing to human energy extraction outside wilderness areas). We validated the projected species loss by comparison with the realized and impending loss reconstructed from habitat conversion and documented by national Red Lists.

Results

Species–energy models largely explained landscape-scale variation of mapped SR in wilderness areas (adjusted R2-values: 0.79–0.93). Model-based projections of SR loss were lower, on average, than reconstructed and documented ones, but the spatial patterns were correlated significantly, with stronger correlation in mammals (Pearson's r = 0.68) than in amphibians (r = 0.60) and birds (r = 0.57).

Main conclusions

Our results suggest that the human appropriation of net primary production is a useful indicator of heterotrophic species loss in used landscapes, hence we recommend its inclusion in models based on species–area relationships to improve predictions of land-use-driven biodiversity loss.  相似文献   
56.
BACKGROUND: Nitric oxide is a messenger molecule of the nervous system, which is produced by the enzyme nitric oxide synthase, which may regulate cyclic guanosine monophosphate levels and which has been implicated in the control of neurotransmitter release. PC-12 pheochromocytoma cells differentiate to form neuronal cells in culture when they are exposed to nerve growth factor. The levels of cyclic guanosine monophosphate in the cells and their ability to release acetylcholine in response to K(+)-depolarization are both maximal after eight days of treatment with nerve growth factor. We set out to assess a possible role for nitric oxide in the processes that occur in differentiating PC-12 cells. RESULTS: Nitric oxide synthase is first evident in differentiating PC-12 cells eight days after beginning treatment with nerve growth factor, coinciding with the marked increase in K(+)-depolarization-induced release of acetylcholine. The release of both acetylcholine and dopamine in response to K(+)-depolarization is blocked by inhibitors of nitric oxide synthase and by hemoglobin, which binds nitric oxide. Providing l-arginine, a precursor required for nitric oxide synthesis, reverses the effects of the inhibitors. In synaptosomal preparations from the corpus striatum, inhibitors of nitric oxide synthase prevent the release of glutamate in response to the glutamate derivative N-methyl-d-aspartate but not in response to K(+)-depolarization. CONCLUSION: Nitric oxide may mediate the release of acetylcholine and dopamine in response to K(+)-depolarization in PC-12 cells and the release of glutamate in response to N-methyl-d-aspartate in striatal synaptosomes. Nitric oxide synthase expression is induced after eight days of treating PC-12 cells with nerve growth factor, coinciding with a marked enhancement of the release of neurotransmitters in response to K(+)-depolarization.  相似文献   
57.
 CD44 isoforms have been implicated in tumor progression and metastasis formation. This study presents a thorough immunohistochemical analysis of CD44 standard and isoform expression in normal human skin appendages and epidermis applying monoclonal antibodies against CD44s, CD44v3, -v4, -v5, -v6, and -v9. An improved immunohistochemical protocol with microwave-based antigen retrieval in paraffin sections and heavy metal amplification of the diaminobenzidine reaction product provided enhanced resolution and sensitivity as compared to studies on frozen sections. The hair follicle, the seborrheic and eccrine sweat glands were strongly positive for all CD44 isoforms studied. In the latter, the clear cells but not the dark (intercalated) cells were positive. The sudoriferous ducts adjacent to the glands were weakly positive for all CD44 isoforms and strongly positive near the skin surface. In the apocrine glands, the basal cells showed only a moderate positivity. The myoepithelial cells expressed only CD44s. In the epidermis, all CD44 isoforms were detectable, with strongest CD44 immunostaining in the lower third of the stratum spinosum and weaker staining in the stratum basale and the upper two-thirds of the stratum granulosum. The stratum granulosum and corneum were unreactive. Thus, a regional and cell type-specific CD44 expression was revealed. Accepted: 10 May 1996  相似文献   
58.
Expression of an Arabidopsis potassium channel gene in guard cells.   总被引:11,自引:1,他引:10       下载免费PDF全文
The Arabidopsis thaliana KAT1 cDNA encodes a voltage-gated inward-rectifying K+ channel. A KAT1 genomic DNA clone was isolated and sequenced, and a 5' promoter and coding sequences containing eight introns were identified. Reporter gene analysis of transgenic plants containing the KAT1 promoter fused to bacterial beta-glucuronidase showed robust beta-glucuronidase activity primarily in guard cells.  相似文献   
59.
A cDNA clone encoding a major chloroplast inner envelope membrane protein of 96 kDa (IEP96) was isolated and characterized. The protein is synthesized as a larger-molecular-weight precursor (pIEP96) which contains a cleavable N-terminal transit sequence of 50 amino acids. The transit peptide exhibits typical stromal targeting information. It is cleaved in vitro by the stromal processing peptidase, though the mature protein is clearly localized in the inner envelope membrane. Translocation of pIEP96 into chloroplasts is greatly stimulated in the presence of 80 mM potassium phosphate which results in an import efficiency of about 90%. This effect is specific for potassium and phosphate, but cannot be ascribed to a membrane potential across the inner envelope membrane. Protein sequence analysis reveals five stretches of repeats of 26 amino acids in length. The N-terminal 300 amino acids are 45% identical (76% similarity) to the 35 kDa -subunit of acetyl-CoA carboxyl-transferase from Escherichia coli. The C-terminal 500 amino acids share significant similarity (69%) with USOI, a component of the cytoskeleton in yeast.Abbreviations Pi phosphate - IEP inner envelope membrane protein - pIEP precursor form of IEP - SSU small subunit of ribulose-1,5-bisphosphate carboxylase oxygenase - IEP96pep peptide specific antiserum to IEP96 - IEP96pol polyspecific antiserum to IEP96  相似文献   
60.
even-skipped is a homeobox gene important in controlling segment patterning in the embryonic fruit fly. Its homeobox encodes a DNA binding domain which binds with similar affinities to two DNA consensus sequences, one AT-rich, the other GC-rich. We describe a crystallographic analysis of the Even-skipped homeodomain complexed to an AT-rich oligonucleotide at 2.0 A resolution. The structure reveals a novel arrangement of two homeodomains bound to one 10 bp DNA sequence in a tandem fashion. This arrangement suggests a mechanism for the homeoproteins' regulatory specificity. In addition, the functionally important residue Gln50 is observed in multiple conformations making direct and water-mediated hydrogen bonds with the DNA bases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号