首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   157篇
  免费   30篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2016年   9篇
  2015年   10篇
  2014年   6篇
  2013年   12篇
  2012年   10篇
  2011年   10篇
  2010年   7篇
  2009年   4篇
  2008年   13篇
  2007年   13篇
  2006年   7篇
  2005年   6篇
  2004年   7篇
  2003年   8篇
  2002年   7篇
  2001年   3篇
  2000年   4篇
  1999年   3篇
  1998年   5篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   5篇
  1992年   6篇
  1991年   3篇
  1990年   2篇
  1989年   6篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1982年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有187条查询结果,搜索用时 15 毫秒
51.
In this study we evaluated the contractile characteristics of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA)1a-expressing hearts ex vivo and in vivo and in particular their response to beta-adrenergic stimulation. Analysis of isolated, work-performing hearts revealed that transgenic (TG) hearts develop much higher maximal rates of contraction and relaxation than wild-type (WT) hearts. Addition of isoproterenol only moderately increased the maximal rate of relaxation (+20%) but did not increase contractility or decrease relaxation time in TG hearts. Perfusion with varied buffer Ca(2+) concentrations indicated an altered dose response to Ca(2+). In vivo TG hearts displayed fairly higher maximal rates of contraction (+ 25%) but unchanged relaxation parameters and a blunted but significant response to dobutamine. Our study also shows that the phospholamban (PLB) level was decreased (-40%) and its phosphorylation status modified in TG hearts. This study clearly demonstrates that increases in SERCA protein level alter the beta-adrenergic response and affect the phosphorylation of PLB. Interestingly, the overall cardiac function in the live animal is only slightly enhanced, suggesting that (neuro)hormonal regulations may play an important role in controlling in vivo heart function.  相似文献   
52.
A natural agglutinin from the serum of the Indian white shrimp Fenneropenaeus (Penaeus) indicus was purified to electrophoretic homogeneity by a single-step affinity chromatography on N-acetylglucosamine-Sepharose 6B. The expression of hemagglutinating (HA) activity of F. indicus agglutinin (FIA) was independent of the presence of divalent cations and insensitive to their chelators. FIA gave a single symmetrical peak in its native form with a molecular mass estimate of 200 kDa on gel filtration in HPLC, and SDS-PAGE under reducing conditions revealed that it is a homo-oligomer of a 27-kDa subunit protein. The pattern of reactivity of FIA against anti-FIA rabbit serum in immunodiffusion and immunoelectrophoretic analysis provided additional evidence for its purity and homogeneity. HA-inhibition studies documented exclusive specificity of FIA for acetyl groups in carbohydrates independently of the presence of these groups at the C-2 or C-5 position and its stereochemical arrangement in the axial or equatorial orientation. The unique ability of FIA to recognize acetyl groups was also explicitly demonstrated with sialo- and asialo-glycoproteins. Strikingly, FIA also interacted equally with amino acids and chemicals containing acetyl groups, thereby unambiguously demonstrating the exquisite specificity of FIA for an acetyl group, irrespective of the presence of this group in carbohydrate or noncarbohydrate ligands. The susceptibility of HA activity of FIA to inhibition by lipopolysaccharides from diverse gram-negative bacteria as well as its ability to selectively agglutinate several bacterial species isolated from infected shrimps implicate a potential role of this humoral agglutinin of F. indicus in the host immunodefense reactions against microbial invaders.  相似文献   
53.
54.
The picosecond time-resolved fluorescence decay data of nine single-tryptophan (trp) proteins and two multi-trp proteins in their native and denatured states were analyzed by the maximum entropy method (MEM). In the denatured state (6 M guanidine hydrochloride) a majority of the single-trp proteins show bimodal (at 25 degrees C) and trimodal (at 85 degrees C) distributions with similar patterns and similar values for average lifetimes. In the native state of the proteins the lifetime distributions were bimodal or trimodal. These results (multimodal distributions) are contradictory to the unimodal Lorentzian distribution of lifetimes reported for some proteins in the native and denatured states. MEM analysis gives a unimodal distribution of lifetimes only when the signal-to-noise ratio is poor in the time-resolved fluorescence decay data. The unimodal distribution model is therefore not realistic for proteins in the native and denatured states. The fluorescence decay components of the bi- or trimodal distribution are associated with the rotamer structures of the indole moiety when the protein is in the random coil state.  相似文献   
55.
The mechanism of response of two potential-sensitive dyes, diOC2(5) (3,3′-diethyloxadicarbocyanine iodide) and oxonol V (bis-[3-phenyl-5-oxoisoxazol-4-yl]pentamethine oxonol), were studied by using steady-state and time-resolved fluorescence techniques. The lipid concentration dependence of the Δψ (membrane potential)-induced change in total fluorescence intensity was quite different for these two dyes. Time-resolved fluorescence measurements showed that the fluorescence decay of these dyes in membranes could be resolved into at least three exponentials. Δψ-induced changes in the levels of these three populations were also measured under a variety of conditions. In the case of diOC2(5) an inside negative Δψ increased the levels of the bound forms. This shows that diOC2(5) responds to Δψ mainly by an “on-off” mechanism whereby Δψ perturbs the membrane-water partition coefficient of the dye. The Δψ-induced changes approached zero when the dye was totally membrane bound. In contrast, the Δψ-induced response of oxonol V increased with increased membrane binding. An inside negative Δψ decreased the level of the bound form with a longer lifetime. This shows that the mechanism of response of oxonol V is a Δψ-induced shift in the equilibrium between bound forms of the dye.  相似文献   
56.
57.
58.
Functional assessments of cardiovascular fitness (CVF) are needed to establish animal models of dysfunction, test the effects of novel therapeutics, and establish the cardio-metabolic phenotype of mice. In humans, the graded maximal exercise test (GXT) is a standardized diagnostic for assessing CVF and mortality risk. These tests, which consist of concurrent staged increases in running speed and inclination, provide diagnostic cardio-metabolic parameters, such as, VO2max, anaerobic threshold, and metabolic crossover. Unlike the human-GXT, published mouse treadmill tests have set, not staged, increases in inclination as speed progress until exhaustion (PXT). Additionally, they often lack multiple cardio-metabolic parameters. Here, we developed a mouse-GXT with the intent of improving mouse-exercise testing sensitivity and developing translatable parameters to assess CVF in healthy and dysfunctional mice. The mouse-GXT, like the human-GXT, incorporated staged increases in inclination, speed, and intensity; and, was designed by considering imitations of the PXT and differences between human and mouse physiology. The mouse-GXT and PXTs were both tested in healthy mice (C57BL/6J, FVBN/J) to determine their ability to identify cardio-metabolic parameters (anaerobic threshold, VO2max, metabolic crossover) observed in human-GXTs. Next, theses assays were tested on established diet-induced (obese-C57BL/6J) and genetic (cardiac isoform Casq2-/-) models of cardiovascular dysfunction. Results showed that both tests reported VO2max and provided reproducible data about performance. Only the mouse-GXT reproducibly identified anaerobic threshold, metabolic crossover, and detected impaired CVF in dysfunctional models. Our findings demonstrated that the mouse-GXT is a sensitive, non-invasive, and cost-effective method for assessing CVF in mice. This new test can be used as a functional assessment to determine the cardio-metabolic phenotype of various animal models or the effects of novel therapeutics.  相似文献   
59.
Thermogenesis is one of the most important homeostatic mechanisms that evolved during vertebrate evolution. Despite its importance for the survival of the organism, the mechanistic details behind various thermogenic processes remain incompletely understood. Although heat production from muscle has long been recognized as a thermogenic mechanism, whether muscle can produce heat independently of contraction remains controversial. Studies in birds and mammals suggest that skeletal muscle can be an important site of non‐shivering thermogenesis (NST) and can be recruited during cold adaptation, although unequivocal evidence is lacking. Much research on thermogenesis during the last two decades has been focused on brown adipose tissue (BAT). These studies clearly implicate BAT as an important site of NST in mammals, in particular in newborns and rodents. However, BAT is either absent, as in birds and pigs, or is only a minor component, as in adult large mammals including humans, bringing into question the BAT‐centric view of thermogenesis. This review focuses on the evolution and emergence of various thermogenic mechanisms in vertebrates from fish to man. A careful analysis of the existing data reveals that muscle was the earliest facultative thermogenic organ to emerge in vertebrates, long before the appearance of BAT in eutherian mammals. Additionally, these studies suggest that muscle‐based thermogenesis is the dominant mechanism of heat production in many species including birds, marsupials, and certain mammals where BAT‐mediated thermogenesis is absent or limited. We discuss the relevance of our recent findings showing that uncoupling of sarco(endo)plasmic reticulum Ca2+‐ATPase (SERCA) by sarcolipin (SLN), resulting in futile cycling and increased heat production, could be the basis for NST in skeletal muscle. The overall goal of this review is to highlight the role of skeletal muscle as a thermogenic organ and provide a balanced view of thermogenesis in vertebrates.  相似文献   
60.
A membrane-embedded curdlan synthase (CrdS) from Agrobacterium is believed to catalyse a repetitive addition of glucosyl residues from UDP-glucose to produce the (1,3)-β-d-glucan (curdlan) polymer. We report wheat germ cell-free protein synthesis (WG-CFPS) of full-length CrdS containing a 6xHis affinity tag and either Factor Xa or Tobacco Etch Virus proteolytic sites, using a variety of hydrophobic membrane-mimicking environments. Full-length CrdS was synthesised with no variations in primary structure, following analysis of tryptic fragments by MALDI-TOF/TOF Mass Spectrometry. Preparative scale WG-CFPS in dialysis mode with Brij-58 yielded CrdS in mg/ml quantities. Analysis of structural and functional properties of CrdS during protein synthesis showed that CrdS was co-translationally inserted in DMPC liposomes during WG-CFPS, and these liposomes could be purified in a single step by density gradient floatation. Incorporated CrdS exhibited a random orientation topology. Following affinity purification of CrdS, the protein was reconstituted in nanodiscs with Escherichia coli lipids or POPC and a membrane scaffold protein MSP1E3D1. CrdS nanodiscs were characterised by small-angle X-ray scattering using synchrotron radiation and the data obtained were consistent with insertion of CrdS into bilayers. We found CrdS synthesised in the presence of the Ac-AAAAAAD surfactant peptide or co-translationally inserted in liposomes made from E. coli lipids to be catalytically competent. Conversely, CrdS synthesised with only Brij-58 was inactive. Our findings pave the way for future structural studies of this industrially important catalytic membrane protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号