首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   1篇
  2021年   2篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
  2010年   3篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2004年   2篇
  2002年   2篇
  1997年   1篇
排序方式: 共有17条查询结果,搜索用时 78 毫秒
11.
McBryant SJ  Peersen OB 《Biochemistry》2004,43(32):10592-10599
The self-association properties of the yeast nucleosome assembly protein 1 (yNAP1) have been investigated using biochemical and biophysical methods. Protein cross-linking and calibrated gel filtration chromatography of yNAP1 indicate the protein exists as a complex mixture of species at physiologic ionic strength (75-150 mM). Sedimentation velocity reveals a distribution of species of 4.5-12 Svedbergs (S) over a 50-fold range of concentrations. The solution-state complexity is reduced at higher ionic strength, allowing for examination of the fundamental oligomer. Sedimentation equilibrium of a homogeneous 4.5 S population at 500 mM sodium chloride reveals these species to be yNAP1 dimers. These dimers self-associate to form higher order oligomers at more moderate ionic strength. Titration of guanidine hydrochloride converts the higher order oligomers to the homogeneous 4.5 S dimer and then converts the 4.5 S dimers to 2.5 S monomers. Circular dichroism shows that guanidine-mediated dissociation of higher order oligomers into yNAP1 dimers is accompanied by only slight changes in secondary structure. Dissociation of the dimer requires a nearly complete denaturation event.  相似文献   
12.
13.
The viral RNA-dependent RNA polymerases show a conserved structure where the fingers domain interacts with the top of the thumb domain to create a tunnel through which nucleotide triphosphates reach the active site. We have solved the crystal structures of poliovirus polymerase (3Dpol) in complex with all four NTPs, showing that they all bind in a common pre-insertion site where the phosphate groups are not yet positioned over the active site. The NTPs interact with both the fingers and palm domains, forming bridging interactions that explain the increased thermal stability of 3Dpol in the presence of NTPs. We have also examined the importance of the fingers-thumb domain interaction for the function and structural stability of 3Dpol. Results from thermal denaturation experiments using circular dichroism and 2-anilino-6-napthaline-sulfonate (ANS) fluorescence show that 3Dpol has a melting temperature of only ∼ 40 °C. NTP binding stabilizes the protein and increases the melting by 5-6 °C while mutations in the fingers-thumb domain interface destabilize the protein and reduce the melting point by as much as 6 °C. In particular, the burial of Phe30 and Phe34 from the tip of the index finger into a pocket at the top of the thumb and the presence of Trp403 on the thumb domain are key interactions required to maintain the structural integrity of the polymerase. The data suggest the fingers domain has significant conformational flexibility and exists in a highly dynamic molten globule state at physiological temperature. The role of the enclosed active site motif as a structural scaffold for constraining the fingers domain and accommodating conformational changes in 3Dpol and other viral polymerases during the catalytic cycle is discussed.  相似文献   
14.
The crystal structure of the coxsackievirus B3 polymerase has been solved at 2.25-Å resolution and is shown to be highly homologous to polymerases from poliovirus, rhinovirus, and foot-and-mouth disease viruses. Together, these structures highlight several conserved structural elements in picornaviral polymerases, including a proteolytic activation-dependent N-terminal structure that is essential for full activity. Interestingly, a comparison of all of the picornaviral polymerase structures shows an unusual conformation for residue 5, which is always located at a distortion in the β-strand composed of residues 1 to 8. In our earlier structure of the poliovirus polymerase, we attributed this conformation to a crystal packing artifact, but the observation that this conformation is conserved among picornaviruses led us to examine the role of this residue in further detail. Here we use coxsackievirus polymerase to show that elongation activity correlates with the hydrophobicity of residue 5 and, surprisingly, more hydrophobic residues result in higher activity. Based on structural analysis, we propose that this residue becomes buried during the nucleotide repositioning step that occurs prior to phosphoryl transfer. We present a model in which the buried N terminus observed in all picornaviral polymerases is essential for stabilizing the structure during this conformational change.  相似文献   
15.
Smith SO  Smith C  Shekar S  Peersen O  Ziliox M  Aimoto S 《Biochemistry》2002,41(30):9321-9332
The Neu receptor tyrosine kinase is constitutively activated by a single amino acid change in the transmembrane domain of the receptor. The mutation of Val664 to glutamate or glutamine induces receptor dimerization and autophosphorylation of the receptor's intracellular kinase domain. The ability of this single mutation to activate the receptor is sequence-dependent, suggesting that specific helix-helix interactions stabilize the transmembrane dimer. We have determined the local secondary structure and interhelical contacts in the region of position 664 in peptide models of the activated receptor using solid-state rotational resonance and rotational echo double-resonance (REDOR) NMR methods. Intrahelical (13)C rotational resonance distance measurements were made between 1-(13)C-Thr662 and 2-(13)C-Gly665 on peptides corresponding to the wild-type Neu and activated Neu transmembrane sequences containing valine and glutamate at position 664, respectively. We observed similar internuclear distances (4.5 +/- 0.2 A) in both Neu and Neu*, indicating that the region near residue 664 is helical and is not influenced by mutation. Interhelical (15)N...(13)C REDOR measurements between Gln664 side chains on opposing helices were not consistent with hydrogen bonding between the side chain functional groups. However, interhelical rotational resonance measurements between 1-(13)C-Glu664 and 2-(13)C-Gly665 and between 1-(13)C-Gly665 and 2-(13)C-Gly665 demonstrated close contacts (4.3-4.5 A) consistent with the packing of Gly665 in the Neu* dimer interface. These measurements provide structural constraints for modeling the transmembrane dimer and define the rotational orientation of the transmembrane helices in the activated receptor.  相似文献   
16.
The active RNA-dependent RNA polymerase of poliovirus, 3Dpol, is generated by cleavage of the 3CDpro precursor protein, a protease that has no polymerase activity despite containing the entire polymerase domain. By intentionally disrupting a known and persistent crystal packing interaction, we have crystallized the poliovirus polymerase in a new space group and solved the complete structure of the protein at 2.0 A resolution. It shows that the N-terminus of fully processed 3Dpol is buried in a surface pocket where it makes hydrogen bonds that act to position Asp238 in the active site. Asp238 is an essential residue that selects for the 2' OH group of substrate rNTPs, as shown by a 2.35 A structure of a 3Dpol-GTP complex. Mutational, biochemical, and structural data further demonstrate that 3Dpol activity is exquisitely sensitive to mutations at the N-terminus. This sensitivity is the result of allosteric effects where the structure around the buried N-terminus directly affects the positioning of Asp238 in the active site.  相似文献   
17.
Coronavirus disease-19 (COVID-19) emerged in late 2019 in China and rapidly became pandemic. As with other coronaviruses, a preponderance of evidence suggests the virus originated in horseshoe bats (Rhinolophus spp.) and may have infected an intermediate host prior to spillover into humans. A significant concern is that SARS-CoV-2 could become established in secondary reservoir hosts outside of Asia. To assess this potential, we challenged deer mice (Peromyscus maniculatus) with SARS-CoV-2 and found robust virus replication in the upper respiratory tract, lungs and intestines, with detectable viral RNA for up to 21 days in oral swabs and 6 days in lungs. Virus entry into the brain also occurred, likely via gustatory-olfactory-trigeminal pathway with eventual compromise to the blood-brain barrier. Despite this, no conspicuous signs of disease were observed, and no deer mice succumbed to infection. Expression of several innate immune response genes were elevated in the lungs, including IFNα, IFNβ, Cxcl10, Oas2, Tbk1 and Pycard. Elevated CD4 and CD8β expression in the lungs was concomitant with Tbx21, IFNγ and IL-21 expression, suggesting a type I inflammatory immune response. Contact transmission occurred from infected to naive deer mice through two passages, showing sustained natural transmission and localization into the olfactory bulb, recapitulating human neuropathology. In the second deer mouse passage, an insertion of 4 amino acids occurred to fixation in the N-terminal domain of the spike protein that is predicted to form a solvent-accessible loop. Subsequent examination of the source virus from BEI Resources determined the mutation was present at very low levels, demonstrating potent purifying selection for the insert during in vivo passage. Collectively, this work has determined that deer mice are a suitable animal model for the study of SARS-CoV-2 respiratory disease and neuropathogenesis, and that they have the potential to serve as secondary reservoir hosts in North America.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号