首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   10篇
  126篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   8篇
  2020年   3篇
  2019年   6篇
  2018年   8篇
  2017年   6篇
  2016年   6篇
  2015年   7篇
  2014年   8篇
  2013年   18篇
  2012年   12篇
  2011年   9篇
  2010年   5篇
  2009年   3篇
  2008年   3篇
  2007年   5篇
  2006年   2篇
  2005年   4篇
  2004年   4篇
  2003年   4篇
  1974年   1篇
排序方式: 共有126条查询结果,搜索用时 15 毫秒
41.
42.
Land‐use change has resulted in rangeland loss and degradation globally. These changes include conversion of native grasslands for row‐crop agriculture as well as degradation of remaining rangeland due to fragmentation and changing disturbance regimes. Understanding how these and other factors influence wildlife use of rangelands is important for conservation and management of wildlife populations. We investigated bat habitat associations in a working rangeland in southeastern North Dakota. We used Petterson d500x acoustic detectors to systematically sample bat activity across the study area on a 1‐km point grid. We identified calls using Sonobat autoclassification software. We detected five species using this working rangeland, which included Lasionycteris noctivagans (2,722 detections), Lasiurus cinereus (2,055 detections), Eptesicus fuscus (749 detections), Lasiurus borealis (62 detections), and Myotis lucifugus (1 detection). We developed generalized linear mixed‐effects models for the four most frequently detected species based on their ecology. The activity of three bat species increased with higher tree cover. While the scale of selection varied between the four species, all three investigated scales were explanatory for at least one bat species. The broad importance of trees to bats in rangelands may put their conservation needs at odds with those of obligate grassland species. Focusing rangeland bat conservation on areas that were treed prior to European settlement, such as riparian forests, can provide important areas for bat conservation while minimizing negative impacts on grassland species.  相似文献   
43.
44.
Predator satiation resulting from interannual reproductive synchrony has been widely documented in masting plants, but how reproductive synchrony within a year influences seed escape is poorly understood. We evaluated whether the intra-annual reproductive synchrony of individual white spruce trees (Picea glauca) increased seed escape from their primary predispersal seed predator, North American red squirrels (Tamiasciurus hudsonicus). Trees with cones that matured synchronously relative to those of other trees within red squirrel territories were significantly more likely to escape squirrel predation in years with both low and superabundant levels of cone production, generating a significantly positive linear selection differential for increasing intra-annual reproductive synchrony. Thus, this masting plant escapes seed predation in numbers through interannual synchrony in seed production and in time through intra-annual synchrony of seed availability.  相似文献   
45.
46.
Disruption of the centromere protein J gene, CENPJ (CPAP, MCPH6, SCKL4), which is a highly conserved and ubiquitiously expressed centrosomal protein, has been associated with primary microcephaly and the microcephalic primordial dwarfism disorder Seckel syndrome. The mechanism by which disruption of CENPJ causes the proportionate, primordial growth failure that is characteristic of Seckel syndrome is unknown. By generating a hypomorphic allele of Cenpj, we have developed a mouse (Cenpjtm/tm) that recapitulates many of the clinical features of Seckel syndrome, including intrauterine dwarfism, microcephaly with memory impairment, ossification defects, and ocular and skeletal abnormalities, thus providing clear confirmation that specific mutations of CENPJ can cause Seckel syndrome. Immunohistochemistry revealed increased levels of DNA damage and apoptosis throughout Cenpjtm/tm embryos and adult mice showed an elevated frequency of micronucleus induction, suggesting that Cenpj-deficiency results in genomic instability. Notably, however, genomic instability was not the result of defective ATR-dependent DNA damage signaling, as is the case for the majority of genes associated with Seckel syndrome. Instead, Cenpjtm/tm embryonic fibroblasts exhibited irregular centriole and centrosome numbers and mono- and multipolar spindles, and many were near-tetraploid with numerical and structural chromosomal abnormalities when compared to passage-matched wild-type cells. Increased cell death due to mitotic failure during embryonic development is likely to contribute to the proportionate dwarfism that is associated with CENPJ-Seckel syndrome.  相似文献   
47.
Sarcoplasmic and t-tubule membrane proteins regulating sarcoplasmic Ca2+ concentration exhibit fibre-type-dependent isoform expression, and play central roles in muscle contraction and relaxation. The purpose of this study was to evaluate the effects of in vitro electrical stimulation on the mRNA expression of components involved in Ca2+ regulation in oxidative and glycolytic skeletal muscle. The mRNA level of Ca2+-ATPase (SERCA1, 2), calsequestrin (CASQ1, 2), ryanodine receptor (RyR1), and dihydropyridine receptor (Cacna1) was assessed in rat extensor digitorum longus (EDL) and soleus (SOL) muscles at 4 h of recovery following in vitro stimulations (either short intensive (SHO) 60 Hz, 5 min, or prolonged moderate (PRO) 20 Hz, 40 min). Stimulation induced acute regulation of the mRNA level of Ca2+-regulating proteins in a manner that does not follow typical fibre-type-specific transitions. In general, stimulation decreased mRNA content of all proteins studied. Most prominent down-regulation was observed for Cacna1 (26 and 32 % after SHO and PRO, respectively, in SOL; 19 % after SHO in EDL). SERCA1, SERCA2, CASQ1, CASQ2, and RyR1 mRNA content also decreased significantly in both muscles relative to resting control. Of notice is that hexokinase II mRNA content was increased in EDL and unchanged in SOL underlining the specificity of the down-regulation of mRNA of Ca2+ regulatory proteins. The results demonstrate contraction-induced down-regulation of mRNAs for the main components of Ca2+-regulating system in skeletal muscle. The down-regulation of both isoforms of SERCA and CASQ after a single electrical stimulation session suggests that adaptations to repeated stimulation involve further regulatory mechanisms in addition to acute mRNA responses.  相似文献   
48.
aHUS (atypical haemolytic uraemic syndrome), AMD (age-related macular degeneration) and other diseases are associated with defective AP (alternative pathway) regulation. CFH (complement factor H), CFI (complement factor I), MCP (membrane cofactor protein) and C3 exhibited the most disease-associated genetic alterations in the AP. Our interactive structural database for these was updated with a total of 324 genetic alterations. A consensus structure for the SCR (short complement regulator) domain showed that the majority (37%) of SCR mutations occurred at its hypervariable loop and its four conserved Cys residues. Mapping 113 missense mutations onto the CFH structure showed that over half occurred in the C-terminal domains SCR-15 to -20. In particular, SCR-20 with the highest total of affected residues is associated with binding to C3d and heparin-like oligosaccharides. No clustering of 49 missense mutations in CFI was seen. In MCP, SCR-3 was the most affected by 23 missense mutations. In C3, the neighbouring thioester and MG (macroglobulin) domains exhibited most of 47 missense mutations. The mutations in the regulators CFH, CFI and MCP involve loss-of-function, whereas those for C3 involve gain-of-function. This combined update emphasizes the importance of the complement AP in inflammatory disease, clarifies the functionally important regions in these proteins, and will facilitate diagnosis and therapy.  相似文献   
49.
In adults, bone is the preferential target site for metastases from primary cancers of prostate, breast, lungs and thyroid. The tendency of these cancers to metastasize to bone is determined by the anatomical distribution of the blood vessels, by the genetic profile of the cancer cells and by the biological characteristics of the bone microenvironment that favour the growth of metastatic cells of certain cancers. Metastases to bone may have either an osteolytic or an ostoblastic phenotype. The interaction in the bone microenvironment between biological factors secreted by metastatic cells, and by osteoblasts and osteoclasts, and the osteolytic and osteoblastic factors released from the organic matrix mediate a vicious cycle characterized by metastatic growth and by ongoing progressive bone destruction. This interaction determines the phenotype of the metastatic bone disease.  相似文献   
50.
Plant Ecology - Dust is a feature of the natural environment that can be exacerbated by anthropogenic activities. A range of physiological impacts have been attributed to dust deposition on plant...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号