首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   800篇
  免费   47篇
  国内免费   2篇
  2024年   1篇
  2023年   6篇
  2022年   3篇
  2021年   34篇
  2020年   26篇
  2019年   22篇
  2018年   24篇
  2017年   32篇
  2016年   41篇
  2015年   51篇
  2014年   72篇
  2013年   67篇
  2012年   76篇
  2011年   58篇
  2010年   50篇
  2009年   31篇
  2008年   24篇
  2007年   49篇
  2006年   36篇
  2005年   27篇
  2004年   23篇
  2003年   23篇
  2002年   14篇
  2001年   7篇
  2000年   2篇
  1999年   6篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1992年   4篇
  1990年   1篇
  1988年   5篇
  1987年   2篇
  1986年   3篇
  1985年   3篇
  1984年   6篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1974年   2篇
  1971年   1篇
  1969年   2篇
  1968年   1篇
排序方式: 共有849条查询结果,搜索用时 121 毫秒
91.
Effects of various cAMP analogues on gluconeogenesis in isolated rabbit kidney tubules have been investigated. In contrast to N(6),2'-O-dibutyryladenosine-3',5'-cyclic monophosphate (db-cAMP) and cAMP, which accelerate renal gluconeogenesis, 8-bromoadenosine-3',5'-cyclic monophosphate (Br-cAMP) and 8-(4-chlorophenylthio)-cAMP (pCPT-cAMP) inhibit glucose production. Stimulatory action of cAMP and db-cAMP may be evoked by butyrate and purinergic agonists generated during their extracellular and intracellular metabolism resulting in an increase in flux through fructose-1,6-bisphosphatase and in consequence acceleration of the rate of glucose formation. On the contrary, Br-cAMP is poorly metabolized in renal tubules and induces a fall of flux through glyceraldehyde-3-phosphate dehydrogenase. The contribution of putative extracellular cAMP receptors to the inhibitory Br-cAMP action is doubtful in view of a decline of glucose formation in renal tubules grown in the primary culture supplemented with forskolin. The presented data indicate that in contrast to hepatocytes, in kidney-cortex tubules an increased intracellular cAMP level results in an inhibition of glucose production.  相似文献   
92.
93.
The ATPase inhibitor protein (IP) of mitochondria was detected in the plasma membrane of living endothelial cells by flow cytometry, competition assays, and confocal microscopy of cells exposed to IP antibodies. The plasma membranes of endothelial cells also possess beta-subunits of the mitochondrial ATPase. Plasma membranes have the capacity to bind exogenous IP. TNF-alpha decreases the level of beta-subunits and increases the amount of IP, indicating that the ratio of IP to beta-subunit exhibits significant variations. Therefore, it is probable that the function of IP in the plasma membrane of endothelial cells is not limited to regulation of catalysis.  相似文献   
94.
Aggregation of Abeta peptides is a seminal event in Alzheimer's disease. Detailed understanding of Abeta assembly would facilitate the targeting and design of fibrillogenesis inhibitors. Here comparative conformational and aggregation studies using CD spectroscopy and thioflavine T fluorescence assay are presented. As a model peptide, the 11-28 fragment of Abeta was used. This model peptide is known to contain the core region responsible for Abeta aggregation. The structural and aggregational behaviour of the peptide was compared with the properties of its variants corresponding to natural, clinically relevant mutants at positions 21-23 (A21G, E22K, E22G, E22Q and D23N). In HFIP (hexafluoro-2-propanol), a strong alpha-helix inducer, the CD spectra revealed an unexpectedly high amount of beta-sheet conformation. The aggregation process of Abeta(11-28) variants provoked by water addition to HFIP was found to be consistent with a model of an alpha-helix-containing intermediate. The aggregation propensity of all Abeta(11-28) variants was also compared and discussed.  相似文献   
95.
The fungi Nomuraea rileyi and Isaria tenuipes (=Paecilomyces tenuipes) are ecologically obligate, widespread pathogens of lepidopterans. Bioassays were carried out to evaluate the activity of oil-suspended conidia of N. rileyi and I. tenuipes against larvae of Spodoptera frugiperda, Spodoptera exigua, Helicoverpa zea, and Heliothis virescens. The tests consisted of two bioassay sets. In the first set, conidia of N. rileyi and I. tenuipes were suspended in water + Tween 80, and in vegetable (canola, soybean) and mineral (proprietary mixture of alkanes and cyclic paraffins) oils, and tested against S. frugiperda. Both fungi were highly compatible with oils and caused mortalities near 100% in all oil treatments; the lowest LT50 values were 4.7 days for N. rileyi in mineral oil and 6.0 days for I. tenuipes in soybean oil. The second set included additional fungal strains and oil formulations (mineral, canola, sunflower, olive and peanut oils) tested against larvae of S. exigua, S. frugiperda, H. zea and H. virescens. The highest activity was that of N. rileyi in mineral oil against Spodoptera spp., with LT50 values of 2.5 days (strain ARSEF 135) and 3 days (strain ARSEF 762) respectively. For two different isolates of I. tenuipes the lowest LT50 values (5.1-5.6 days respectively) were obtained with mineral oil formulations against Spodoptera spp. and H. zea respectively. Additionally, we tested both fungi against prepupae of all four lepidopteran species. Mortalities with I. tenuipes against S. exigua ranged from 90% to 100% (strains ARSEF 2488 and 4096); N. rileyi caused 95% mortality on S. frugiperda. The activity of formulations depended on host species and oil used; Spodoptera spp. was more susceptible to these fungi than Heliothis and Helicoverpa. The results indicate that a comprehensive evaluation of these entomopathogens in agriculture using oil application technologies is advisable, particularly, in organic and sustainable settings.  相似文献   
96.
Bcl-2 inhibits apoptosis by regulating the release of cytochrome c and other proteins from mitochondria. Oligomerization of Bax promotes cell death by permeabilizing the outer mitochondrial membrane. In transfected cells and isolated mitochondria, Bcl-2, but not the inactive point mutants Bcl-2-G145A and Bcl-2-V159D, undergoes a conformation change in the mitochondrial membrane in response to apoptotic agonists such as tBid and Bax. A mutant Bcl-2 with two cysteines introduced at positions predicted to result in a disulfide bond that would inhibit the mobility of alpha5-alpha6 helices (Bcl-2-S105C/E152C) was only active in a reducing environment. Thus, Bcl-2 must change the conformation to inhibit tBid-induced oligomerization of integral membrane Bax monomers and small oligomers. The conformationally changed Bcl-2 sequesters the integral membrane form of Bax. If Bax is in excess, apoptosis resumes as Bcl-2 is consumed by the conformational change and in complexes with Bax. Thus, Bcl-2 functions as an inhibitor of mitochondrial permeabilization by changing conformation in the mitochondrial membrane to bind membrane-inserted Bax monomers and prevent productive oligomerization of Bax.  相似文献   
97.
Ciprofloxacin induced an increment of reactive oxygen species in sensitive strains of Staphylococcus aureus leading to oxidative stress detected by chemiluminescence while resistant strains did not suffer such stress. Oxidation of lipids was performed by employing thiobarbituric acid reaction to detect the formation of the amplified intermediate between reactive species oxygen and cytoplasmic macromolecules, namely malondialdehyde (MDA). The sensitive strain presented higher peroxidation of lipids than the resistant strain. The oxidative consequence for DNA was investigated by means of bacteria incubation with ciprofloxacin and posterior extraction of DNA, which was studied by high performance liquid chromatography (HPLC). Sensitive S. aureus ATCC 29213 showed an increase of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) respect controls without antibiotic; there was evident increase of the ratio between 8-oxodG and deoxyguanosine (dG) as a consequence of oxidation of dG to 8-oxodG considered the major DNA marker of oxidative stress. The resistant strain showed low oxidation of DNA and the analysis of 8-oxodG/dG ratio indicated lesser formation of 8-oxodG than S. aureus ATCC 29213.  相似文献   
98.
Chacón P  Armesto JJ 《Oecologia》2006,146(4):555-565
Carbon-based secondary compounds (CBSCs), such as phenols or tannins, have been considered as one of the most important and general chemical barriers of woody plants against a diverse array of herbivores. Herbivory has been described as a critical factor affecting the growth and survival of newly established tree seedlings or juveniles then, the presence of secondary metabolites as defences against herbivores should be a primary strategy to reduce foliar damage. We examined whether light-induced changes in leaf phenolic chemistry affected insect herbivory on seedlings of two rainforest tree species, Drimys winteri (Winteraceae) and Gevuina avellana (Proteaceae). Seedlings of both species were planted under closed canopy and in a canopy gap within a large remnant forest patch. Half of the seedlings in each habitat were disinfected with a wide-spectrum systemic insecticide and the other half were used as controls. Seedling growth, survival, and foliar damage (estimated by an herbivory index) due to insect herbivores were monitored over a period of 16 months (December 2001–April 2003). The total leaf content of phenols and condensed tannins were assessed in seedlings from both habitats. As expected, access to light induced a greater production of CBSCs in seedlings of both tree species, but these compounds did not seem to play a significant defensive role, as seedlings grown in gaps suffered greater leaf damage than those planted in forest interior. In addition, in both habitats, seedlings without insecticide treatment suffered a greater foliar damage than those with insecticide, especially 16 months after the beginning of the experiment. Canopy openness and herbivory had positive and negative effects, respectively, on seedling growth and survival in both tree species. In conclusion, despite the higher levels of defence in tree-fall gap, the higher densities of herbivore override this and lead to higher damage levels.  相似文献   
99.
100.
A group of 20 bacterial strains was isolated from the rhizosphere of different agricultural plants growing in alkaline soils in the northeast of Mexico. The phylogenetic analysis of the 16S rRNA gene sequence from four strains showed that this novel group belonged to the Cupriavidus genus, with C. taiwanensis (~98.9%) and C. necator (~98.8%) as the closest species. However, DNA-DNA reassociation values were less than 20%. The novel group did not fix nitrogen and lacked nifH and nodA genes, unlike C. taiwanensis. Whole-cell protein patterns were highly similar among the 20 strains but different from the closest Cupriavidus species. BOX-PCR patterns were distinct among the 20 strains but also differed from other Cupriavidus type species. The major cellular fatty acids from strains ASC-732(T) and SLV-2362 were C(16:0), C(18:1) ω7c/12t/9t and C(16:1) ω7c and/or C(15:0) iso 2OH. The major polar lipids consisted of phosphatidylglycerol, cardiolipin, phosphatidylethanolamine, 2-hydroxylated-phosphatidylethanolamine and an unknown aminolipid. The DNA G+C content of strain ASC-732(T) was 66.8mol%. All 20 strains grew in the presence of 5-10mgmL(-1) arsenic, 1mgmL(-1) zinc, and 0.1mgmL(-1) copper. Consequently, the group of strains was considered to represent a novel species for which the name Cupriavidus alkaliphilus sp. nov. is proposed. The type strain is ASC-732(T) (=LMG 26294(T)=CIP 110330(T)).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号