首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2387篇
  免费   188篇
  2023年   7篇
  2022年   7篇
  2021年   44篇
  2020年   30篇
  2019年   34篇
  2018年   37篇
  2017年   36篇
  2016年   55篇
  2015年   118篇
  2014年   91篇
  2013年   173篇
  2012年   219篇
  2011年   172篇
  2010年   117篇
  2009年   104篇
  2008年   129篇
  2007年   134篇
  2006年   129篇
  2005年   121篇
  2004年   111篇
  2003年   98篇
  2002年   93篇
  2001年   30篇
  2000年   23篇
  1999年   38篇
  1998年   30篇
  1997年   25篇
  1996年   21篇
  1995年   23篇
  1994年   20篇
  1993年   24篇
  1992年   25篇
  1991年   24篇
  1990年   28篇
  1989年   15篇
  1988年   14篇
  1987年   16篇
  1986年   14篇
  1985年   22篇
  1984年   16篇
  1983年   10篇
  1982年   8篇
  1981年   8篇
  1980年   11篇
  1979年   13篇
  1978年   8篇
  1975年   10篇
  1974年   9篇
  1973年   5篇
  1968年   5篇
排序方式: 共有2575条查询结果,搜索用时 15 毫秒
101.
In the skeletal muscle, the ageing process is characterized by a loss of muscle mass and strength, coupled with a decline of mitochondrial function and a decrease of satellite cells. This profile is more pronounced in hindlimb than in forelimb muscles, both in humans and in rodents. Utilizing light and electron microscopy, myosin heavy chain isoform distribution, proteomic analysis by 2D‐DIGE, MALDI‐TOF MS and quantitative immunoblotting, this study analyzes the protein levels and the nuclear localization of specific molecules, which can contribute to a preferential muscle loss. Our results identify the molecular changes in the hindlimb (gastrocnemius) and forelimb (triceps) muscles during ageing in rats (3‐ and 22‐month‐old). Specifically, the oxidative metabolism contributes to tissue homeostasis in triceps, whereas respiratory chain disruption and oxidative‐stress‐induced damage imbalance the homeostasis in gastrocnemius muscle. High levels of dihydrolipoyllysine‐residue acetyltransferase (Dlat) and ATP synthase subunit alpha (Atp5a1) are detected in triceps and gastrocnemius, respectively. Interestingly, in triceps, both molecules are increased in the nucleus in aged rats and are associated to an increased protein acetylation and myoglobin availability. Furthermore, autophagy is retained in triceps whereas an enhanced fusion, decrement of mitophagy and of regenerative potential is observed in aged gastrocnemius muscle.  相似文献   
102.
BackgroundPolyunsaturated n-3 and n-6 polyunsaturated fatty acids (PUFA) are precursors of biologically active metabolites that affect blood pressure (BP) regulation. This study investigated the association of n-3 and n-6 PUFA and BP in children and adolescents.MethodsIn a subsample of 1267 children aged 2–9 years at baseline of the European IDEFICS (Identification and prevention of dietary- and lifestyle-induced health effects in children and infants) cohort whole blood fatty acids were measured by a validated gas chromatographic method. Systolic and diastolic BP was measured at baseline and after two and six years. Mixed-effects models were used to assess the associations between fatty acids at baseline and BP z-scores over time adjusting for relevant covariables. Models were further estimated stratified by sex and weight status.ResultsThe baseline level of arachidonic acid was positively associated with subsequent systolic BP (β = 0.08, P = 0.002) and diastolic BP (β = 0.07, P<0.001). In thin/normal weight children, baseline alpha-linolenic (β = -1.13, P = 0.003) and eicosapentaenoic acid (β = -0.85, P = 0.003) levels were inversely related to baseline and also to subsequent systolic BP and alpha-linolenic acid to subsequent diastolic BP. In overweight/obese children, baseline eicosapentaenoic acid level was positively associated with baseline diastolic BP (β = 0.54, P = 0.005).ConclusionsLow blood arachidonic acid levels in the whole sample and high n-3 PUFA levels in thin/normal weight children are associated with lower and therefore healthier BP. The beneficial effects of high n-3 PUFA on BP were not observed in overweight/obese children, suggesting that they may have been overlaid by the unfavorable effects of excess weight.  相似文献   
103.
Phenylalanine Ammonia Lyase (PAL) gene which plays a key role in bio-synthesis of medicinally important compounds, Rutin/quercetin was sequence characterized for its efficient genomics application. These compounds possessing anti-diabetic and anti-cancer properties and are predominantly produced by Fagopyrum spp. In the present study, PAL gene was sequenced from three Fagopyrum spp. (F. tataricum, F. esculentum and F. dibotrys) and showed the presence of three SNPs and four insertion/deletions at intra and inter specific level. Among them, the potential SNP (position 949th bp G>C) with Parsimony Informative Site was selected and successfully utilised to individuate the zygosity/allelic variation of 16 F. tataricum varieties. Insertion mutations were identified in coding region, which resulted the change of a stretch of 39 amino acids on the putative protein. Our Study revealed that autogamous species (F. tataricum) has lower frequency of observed SNPs as compared to allogamous species (F. dibotrys and F. esculentum). The identified SNPs in F. tataricum didn’t result to amino acid change, while in other two species it caused both conservative and non-conservative variations. Consistent pattern of SNPs across the species revealed their phylogenetic importance. We found two groups of F. tataricum and one of them was closely related with F. dibotrys. Sequence characterization information of PAL gene reported in present investigation can be utilized in genetic improvement of buckwheat in reference to its medicinal value.  相似文献   
104.
Glutamate is the main excitatory neurotransmitter of the central nervous system (CNS), released both from neurons and glial cells. Acting via ionotropic (NMDA, AMPA, kainate) and metabotropic glutamate receptors, it is critically involved in essential regulatory functions. Disturbances of glutamatergic neurotransmission can be detected in cognitive and neurodegenerative disorders. This paper summarizes the present knowledge on the modulation of glutamate-mediated responses in the CNS. Emphasis will be put on NMDA receptor channels, which are essential executive and integrative elements of the glutamatergic system. This receptor is crucial for proper functioning of neuronal circuits; its hypofunction or overactivation can result in neuronal disturbances and neurotoxicity. Somewhat surprisingly, NMDA receptors are not widely targeted by pharmacotherapy in clinics; their robust activation or inhibition seems to be desirable only in exceptional cases. However, their fine-tuning might provide a promising manipulation to optimize the activity of the glutamatergic system and to restore proper CNS function. This orchestration utilizes several neuromodulators. Besides the classical ones such as dopamine, novel candidates emerged in the last two decades. The purinergic system is a promising possibility to optimize the activity of the glutamatergic system. It exerts not only direct and indirect influences on NMDA receptors but, by modulating glutamatergic transmission, also plays an important role in glia-neuron communication. These purinergic functions will be illustrated mostly by depicting the modulatory role of the purinergic system on glutamatergic transmission in the prefrontal cortex, a CNS area important for attention, memory and learning.  相似文献   
105.
In cereals, tillering and leaf development are key factors in the concept of crop ideotype, introduced in the 1960 s to enhance crop yield, via manipulation of plant architecture. In the present review, we discuss advances in genetic analysis of barley shoot architecture,focusing on tillering, leaf size and angle. We also discuss novel phenotyping techniques, such as 2 D and 3 D imaging, that have been introduced in the era of phenomics, facilitating reliable trait measurement. We discuss the identification of genes and pathways that are involved in barley tillering and leaf development,highlighting key hormones involved in the control of plant architecture in barley and rice. Knowledge on genetic control of traits related to plant architecture provides useful resources for designing ideotypes for enhanced barley yield and performance.  相似文献   
106.
107.
108.
109.
It has been shown that the propensity of a protein to form amyloid-like fibrils can be predicted with high accuracy from the knowledge of its amino acid sequence. It has also been suggested, however, that some regions of the sequences are more important than others in determining the aggregation process. Here, we have addressed this issue by constructing a set of “sequence scrambled” variants of the first 29 residues of horse heart apomyoglobin (apoMb1-29), in which the sequence was modified while maintaining the same amino acid composition. The clustering of the most amyloidogenic residues in one region of the sequence was found to cause a marked increase of the elongation rate (kagg) and a remarkable shortening of the lag phase (tlag) of the fibril growth, as determined by far-UV circular dichroism and thioflavin T fluorescence. We also show that taking explicitly into consideration the presence of aggregation-promoting regions in the predictive methods results in a quantitative agreement between the theoretical and observed kagg and tlag values of the apoMb1-29 variants. These results, together with a comparison between homologous segments from the family of globins, indicate the existence of a negative selection against the clustering of highly amyloidogenic residues in one or few regions of polypeptide sequences.  相似文献   
110.
Most of the hypomorphic Prep1i/i embryos (expressing 3-10% of the Prep1 protein), die between E17.5 and P0, with profound anemia, eye malformations and angiogenic anomalies [Ferretti, E., Villaescusa, J.C., Di Rosa, P., Fernandez-Diaz, L.-C., Longobardi, E., Mazzieri, R., Miccio, A., Micali, N., Selleri, L., Ferrari G., Blasi, F. (2006). Hypomorphic mutation of the TALE gene Prep1 (pKnox1) causes a major reduction of Pbx and Meis proteins and a pleiotropic embryonic phenotype. Mol. Cell. Biol. 26, 5650-5662]. We now report on the hematopoietic phenotype of these embryos. Prep1i/i fetal livers (FL) are hypoplastic, produce less common myeloid progenitors colonies (CFU-GEMM) in cytokine-supplemented methylcellulose and have an increased number of B-cells precursors that differentiate poorly. Prep1i/i FL is able to protect lethally irradiated mice only at high cell doses but the few protected mice show major anomalies in all hematopoietic lineages in both bone marrow (BM) and peripheral organs. Prep1i/i FL cells compete inefficiently with wild type bone marrow in competitive repopulation experiments, suggesting that the major defect lies in long-term repopulating hematopoietic stem cells (LTR-HSC). Indeed, wt embryonic expression of Prep1 in the aorta-gonad-mesonephros (AGM) region, fetal liver (FL), cKit+Sca1+LinAA4.1+ (KSLA) cells and B-lymphocytes precursors agrees with the observed phenotype. We therefore conclude that Prep1 is required for a correct and complete hematopoiesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号