首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24028篇
  免费   1977篇
  国内免费   8篇
  2023年   91篇
  2022年   82篇
  2021年   417篇
  2020年   255篇
  2019年   304篇
  2018年   433篇
  2017年   392篇
  2016年   623篇
  2015年   1047篇
  2014年   1180篇
  2013年   1347篇
  2012年   1812篇
  2011年   1709篇
  2010年   1128篇
  2009年   1009篇
  2008年   1390篇
  2007年   1391篇
  2006年   1244篇
  2005年   1298篇
  2004年   1185篇
  2003年   1082篇
  2002年   1057篇
  2001年   355篇
  2000年   391篇
  1999年   359篇
  1998年   307篇
  1997年   212篇
  1996年   202篇
  1995年   156篇
  1994年   172篇
  1993年   161篇
  1992年   218篇
  1991年   205篇
  1990年   232篇
  1989年   168篇
  1988年   186篇
  1987年   170篇
  1986年   125篇
  1985年   162篇
  1984年   166篇
  1983年   115篇
  1982年   133篇
  1981年   114篇
  1980年   86篇
  1979年   114篇
  1978年   76篇
  1977年   88篇
  1975年   68篇
  1974年   63篇
  1973年   64篇
排序方式: 共有10000条查询结果,搜索用时 359 毫秒
991.
Urban development is a major cause of habitat loss and fragmentation. Few studies, however, have dealt with fragmentation in an urban landscape. In this paper, we examine the genetic structure of isolated populations of the eastern red-backed salamander (Plethodon cinereus) in a metropolitan area. We sampled four populations located on a mountain in the heart of Montréal (Québec, Canada), which presents a mosaic of forested patches isolated by roads, graveyards and buildings. We assessed the genetic structure of these populations using microsatellite loci and compared it to the genetic structure of four populations located in a continuous habitat in southern Québec. Our results indicate that allelic richness and heterozygosity are lower in the urban populations. Exact differentiation tests and pairwise F ST also show that the populations found in the fragmented habitat are genetically differentiated, whereas populations located in the continuous habitat are genetically homogeneous. These results raise conservation concerns for these populations as well as for rare or threatened species inhabiting urban landscapes.  相似文献   
992.
During V(D)J recombination, the RAG complex binds at recombination signal sequences and creates double-strand breaks. In addition to this sequence-specific recognition of the RSS, the RAG complex has been shown to be a structure-specific nuclease, cleaving 3' overhangs and 3' flaps, and, more recently, 10 nucleotides (nt) bubble (heteroduplex) structures. Here, we assess the smallest size heteroduplex that core and full-length RAGs can cleave. We also test whether bubbles adjacent to a partial RSS are nicked any differently or any more efficiently than bubbles that are surrounded by random sequence. These points are important in considering what types and what size of non-B DNA structure that the RAG complex can nick, and this helps assess the role of the RAG complex in mediating lymphoid chromosomal translocations. We find that the smallest bubble nicked by the RAG complex is 3nt, and proximity to a partial or full RSS sequence does not affect the nicking by RAGs. RAG nicking efficiency increases with the size of the heteroduplex and is only about two-fold less efficient than an RSS when the bubble is 6nt. We consider these findings in the context of RAG nicking at non-B DNA structures in lymphoid chromosomal translocations.  相似文献   
993.
Kwon Y  Chi P  Roh DH  Klein H  Sung P 《DNA Repair》2007,6(10):1496-1506
Rad54, a member of the Swi2/Snf2 protein family, works in concert with the RecA-like recombinase Rad51 during the early and late stages of homologous recombination. Rad51 markedly enhances the activities of Rad54, including the induction of topological changes in DNA and the remodeling of chromatin structure. Reciprocally, Rad54 promotes Rad51-mediated DNA strand invasion with either naked or chromatinized DNA. Here, using various Saccharomyces cerevisiae rad51 and rad54 mutant proteins, mechanistic aspects of Rad54/Rad51-mediated chromatin remodeling are defined. Disruption of the Rad51-Rad54 complex leads to a marked attenuation of chromatin remodeling activity. Moreover, we present evidence that assembly of the Rad51 presynaptic filament represents an obligatory step in the enhancement of the chromatin remodeling reaction. Interestingly, we find a specific interaction of the N-terminal tail of histone H3 with Rad54 and show that the H3 tail interaction domain resides within the amino terminus of Rad54. These results suggest that Rad54-mediated chromatin remodeling coincides with DNA homology search by the Rad51 presynaptic filament and that this process is facilitated by an interaction of Rad54 with histone H3.  相似文献   
994.
Activity-based protein profiling has emerged as a valuable technology for labeling, enriching, and assessing protein activities from complex mixtures. This is primarily accomplished via a two-step identification and quantification process. Here we show a highly quantitative and streamlined method, termed catch-and-release activity profiling of enzymes (CAPE), which reduces this procedure to a single step. Furthermore the CAPE approach has the ability to detect small quantitative changes that may have been missed by alternative mass spectrometry-based techniques.  相似文献   
995.
The high-osmolarity glycerol (HOG) mitogen-activated protein (MAP) kinase pathway mediates adaptation to high-osmolarity stress in the yeast Saccharomyces cerevisiae. Here we investigate the function of HOG in the human opportunistic fungal pathogen Candida glabrata. C. glabrata sho1Delta (Cgsho1Delta) deletion strains from the sequenced ATCC 2001 strain display severe growth defects under hyperosmotic conditions, a phenotype not observed for yeast sho1Delta mutants. However, deletion of CgSHO1 in other genetic backgrounds fails to cause osmostress hypersensitivity, whereas cells lacking the downstream MAP kinase Pbs2 remain osmosensitive. Notably, ATCC 2001 Cgsho1Delta cells also display methylglyoxal hypersensitivity, implying the inactivity of the Sln1 branch in ATCC 2001. Genomic sequencing of CgSSK2 in different C. glabrata backgrounds demonstrates that ATCC 2001 harbors a truncated and mutated Cgssk2-1 allele, the only orthologue of yeast SSK2/SSK22 genes. Thus, the osmophenotype of ATCC 2001 is caused by a point mutation in Cgssk2-1, which debilitates the second HOG pathway branch. Functional complementation experiments unequivocally demonstrate that HOG signaling in yeast and C. glabrata share similar functions in osmostress adaptation. In contrast to yeast, however, Cgsho1Delta mutants display hypersensitivity to weak organic acids such as sorbate and benzoate. Hence, CgSho1 is also implicated in modulating weak acid tolerance, suggesting that HOG signaling in C. glabrata mediates the response to multiple stress conditions.  相似文献   
996.
Clear native electrophoresis and blue native electrophoresis are microscale techniques for the isolation of membrane protein complexes. The Coomassie Blue G-250 dye, used in blue native electrophoresis, interferes with in-gel fluorescence detection and in-gel catalytic activity assays. This problem can be overcome by omitting the dye in clear native electrophoresis. However, clear native electrophoresis suffers from enhanced protein aggregation and broadening of protein bands during electrophoresis and therefore has been used rarely. To preserve the advantages of both electrophoresis techniques we substituted Coomassie dye in the cathode buffer of blue native electrophoresis by non-colored mixtures of anionic and neutral detergents. Like Coomassie dye, these mixed micelles imposed a charge shift on the membrane proteins to enhance their anodic migration and improved membrane protein solubility during electrophoresis. This improved clear native electrophoresis offers a high resolution of membrane protein complexes comparable to that of blue native electrophoresis. We demonstrate the superiority of high resolution clear native electrophoresis for in-gel catalytic activity assays of mitochondrial complexes I-V. We present the first in-gel histochemical staining protocol for respiratory complex III. Moreover we demonstrate the special advantages of high resolution clear native electrophoresis for in-gel detection of fluorescent labeled proteins labeled by reactive fluorescent dyes and tagged by fluorescent proteins. The advantages of high resolution clear native electrophoresis make this technique superior for functional proteomics analyses.  相似文献   
997.
The multidrug exporter AcrB is the inner membrane component of the AcrAB-TolC drug efflux system in Escherichia coli and is responsible for the resistance of this organism to a wide range of drugs. Here we describe the crystal structure of the trimeric AcrB in complex with a designed ankyrin-repeat protein (DARPin) inhibitor at 2.5-Å resolution. The three subunits of AcrB are locked in different conformations revealing distinct channels in each subunit. There seems to be remote conformational coupling between the channel access, exit, and the putative proton-translocation site, explaining how the proton motive force is used for drug export. Thus our structure suggests a transport pathway not through the central pore but through the identified channels in the individual subunits, which greatly advances our understanding of the multidrug export mechanism.  相似文献   
998.
Glucagon, secreted from pancreatic islet alpha cells, stimulates gluconeogenesis and liver glycogen breakdown. The mechanism regulating glucagon release is debated, and variously attributed to neuronal control, paracrine control by neighbouring beta cells, or to an intrinsic glucose sensing by the alpha cells themselves. We examined hormone secretion and Ca(2+) responses of alpha and beta cells within intact rodent and human islets. Glucose-dependent suppression of glucagon release persisted when paracrine GABA or Zn(2+) signalling was blocked, but was reversed by low concentrations (1-20 muM) of the ATP-sensitive K(+) (KATP) channel opener diazoxide, which had no effect on insulin release or beta cell responses. This effect was prevented by the KATP channel blocker tolbutamide (100 muM). Higher diazoxide concentrations (>/=30 muM) decreased glucagon and insulin secretion, and alpha- and beta-cell Ca(2+) responses, in parallel. In the absence of glucose, tolbutamide at low concentrations (<1 muM) stimulated glucagon secretion, whereas high concentrations (>10 muM) were inhibitory. In the presence of a maximally inhibitory concentration of tolbutamide (0.5 mM), glucose had no additional suppressive effect. Downstream of the KATP channel, inhibition of voltage-gated Na(+) (TTX) and N-type Ca(2+) channels (omega-conotoxin), but not L-type Ca(2+) channels (nifedipine), prevented glucagon secretion. Both the N-type Ca(2+) channels and alpha-cell exocytosis were inactivated at depolarised membrane potentials. Rodent and human glucagon secretion is regulated by an alpha-cell KATP channel-dependent mechanism. We propose that elevated glucose reduces electrical activity and exocytosis via depolarisation-induced inactivation of ion channels involved in action potential firing and secretion.  相似文献   
999.
1000.
Observations associated with drug-induced hyper- or hypoprolactinemia in rat toxicology studies may be similar and include increased ovarian weight due to increased presence of corpora lutea. Hyperprolactinemia may be distinguished if mammary gland hyperplasia with secretion and/or vaginal mucification is observed. Reproductive toxicity study endpoints can differentiate hyper- from hypoprolactinemia based on their differential effects on estrous cycles, mating, and fertility. Although the manifestations of hyper- and hypoprolactinemia in rats generally differ from that in humans, mechanisms of drug-related changes in prolactin synthesis/release can be conserved across species and pathologically increased or decreased prolactin levels may compromise some aspect of reproductive function in all species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号