首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   655篇
  免费   34篇
  689篇
  2023年   7篇
  2022年   7篇
  2021年   20篇
  2020年   16篇
  2019年   16篇
  2018年   27篇
  2017年   14篇
  2016年   21篇
  2015年   22篇
  2014年   43篇
  2013年   41篇
  2012年   36篇
  2011年   42篇
  2010年   18篇
  2009年   19篇
  2008年   26篇
  2007年   31篇
  2006年   34篇
  2005年   26篇
  2004年   26篇
  2003年   14篇
  2002年   18篇
  2001年   12篇
  2000年   27篇
  1999年   20篇
  1998年   11篇
  1997年   9篇
  1996年   8篇
  1995年   6篇
  1994年   7篇
  1993年   3篇
  1992年   14篇
  1991年   3篇
  1990年   4篇
  1989年   6篇
  1988年   4篇
  1987年   4篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1979年   3篇
  1977年   1篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
  1970年   1篇
  1966年   3篇
  1962年   2篇
  1961年   1篇
排序方式: 共有689条查询结果,搜索用时 15 毫秒
21.
Hsp16.3, a molecular chaperone, plays a vital role in the growth and survival of Mycobacterium tuberculosis inside the host. We previously reported that deletion of three amino acid residues (142STN144) from C-terminal extension (CTE) of Hsp16.3 triggers its structural perturbation and increases its chaperone activity, which reaches its apex upon the deletion of its entire CTE (141RSTN144). Thus, we hypothesized that Arg141 (R141) and Ser142 (S142) in the CTE of Hsp16.3 possibly hold the key in maintaining its native-like structure and chaperone activity. To test this hypothesis, we generated two deletion mutants in which R141 and S142 were deleted individually (Hsp16.3ΔR141 and Hsp16.3ΔS142) and three substitution mutants in which R141 was replaced by lysine (Hsp16.3R141K), alanine (Hsp16.3R141A), and glutamic acid (Hsp16.3R141E), respectively. Hsp16.3ΔS142 or Hsp16.3R141K mutant has native-like structure and chaperone activity. Deletion of R141 from the CTE (Hsp16.3ΔR141) perturbs the secondary and tertiary structure, lowers the subunit exchange dynamics and decreases the chaperone activity of Hsp16.3. But, the substitution of R141 with alanine (Hsp16.3R141A) or glutamic acid (Hsp16.3R141E) perturbs its secondary and tertiary structure. Surprisingly, such charge tampering of R141 enhances the subunit exchange dynamics and chaperone activity of Hsp16.3. Interestingly, neither the deletion of R141/S142 nor the substitution of R141 with lysine, alanine and glutamic acid affects the oligomeric mass/size of Hsp16.3. Overall, our study suggests that R141 (especially the positive charge on R141) plays a crucial role in maintaining the native-like structure as well as in regulating subunit exchange dynamics and chaperone activity of Hsp16.3.  相似文献   
22.
Triple negative breast cancer (TNBC) originates from a less differentiated ductal cell of breast, which is less sensitive to chemotherapy. The chemotolerance mechanism of TNBC has not yet been studied in detail. For this reason, molecular profiles (expression/genetic/epigenetic) of Y654-p-β-catenin (active) and its kinase epidermal growth factor receptor (EGFR) along with SH3GL2 (regulator of EGFR homeostasis) were compared between neoadjuvant chemotherapy treated (NACT) and pretherapeutic TNBC samples. Reduced nuclear expression of Y654-p-β-catenin protein with low proliferation index and CD44 prevalence showed concordance with reduced expression of EGFR/Y1045-p-EGFR proteins in the NACT samples than the pretherapeutic TNBC samples. Infrequent messenger RNA expression, gene amplification (10–32.5%), and mutation (1%) of EGFR were seen in the TNBC samples irrespective of therapy, suggesting the importance of EGFR protein stabilization in this tumor. The upregulation of SH3GL2 seen in the NACT samples in contrast to the pretherapeutic samples might be due to its promoter hypomethylation, as seen in the quantitative methylation assay. A similar trend of upregulation of SH3GL2 and downregulation of EGFR, Y1045-p-EGFR, Y654-p-β-catenin were seen in the MDA-MB-231 cell line using antharacycline antitumor drugs (doxorubicin/nogalamycin). The NACT patients with reduced expression of Y654-p-β-catenin and/or EGFR and high expression of SH3GL2 showed comparatively better prognosis than the pretherapeutic patients. Thus, our study showed that reduced nuclear expression of Y654-p-β-catenin in NACT samples due to downregulation of EGFR protein through promoter hypomethylation-mediated upregulation of SH3GL2, resulting in low proliferation index/CD44 prevalence with better prognosis of the NACT patients, might have an important role in the chemotolerance of TNBC.  相似文献   
23.
PorH and PorA are two small peptides that, in complex, form a voltage-dependent ion channel in the outer membrane of Corynebacterium glutamicum. Specific post-translational modifications on PorA and PorH are required for the formation of a functional ion channel. The assignment of PorH proton NMR chemical shifts in DMSO, allowed identifying unambiguously the exact position of the PorH O-mycoloylation on Ser 56 side chain. This was further confirmed by site directed mutagenesis and mass spectrometry. Together with the previously published localization of PorA mycoloylation, this provides the complete primary structure characterization of this outer membrane porin.  相似文献   
24.
A multiple-bile-ion-sensing polyvinyl chloride-based membrane electrode capable of monitoring any of the three common bile ions in humans, namely, cholate, deoxycholate, and chenodeoxycholate, was developed and characterized. Compared to single-bile-ion-sensing electrodes, it showed a sub-Nernstian response. All other electrode properties were, however, similar, making this a successful replacement for three individual electrodes. With appropriate conditioning, this electrode could repeatedly change selectivity without losing membrane activity. It was reproducible, was stable for 5 months, had low response time, and could be used to measure critical micelle concentrations. The lower limit of detection was 10 nM. Selectivity coefficients for various anions with respect to bile ions more or less followed the Hoffmeister series. Plots of R ((Nernst equivalent of slope in the presence of primary ion and a fixed amount of interfering ion)/(slope in the presence of only the primary ion)) vs square root of ionic strength for an interfering ion were linear. One major application of this electrode is its use in kinetics. We have tested its ability to monitor continuously changing bile ion concentrations during their interactions with a biocompatible polymer, polyethylene glycol (6000), and determined rate constants.  相似文献   
25.
A series of quinolone derivatives, containing different heterocyclic amines were prepared. Synthesized compounds were evaluated for their in vitro antimicrobial activities against two Gram-positive bacteria, three Gram-negative bacteria as well as four fungi. All the derivatives showed good activity towards Gram-positive bacteria and less activity towards Gram-negative bacteria. They also showed moderate to comparable activity against Aspergillus niger and Candida albicans and low to moderate antifungal activity against Aspergillus fumigatus and Aspergillus flavus.  相似文献   
26.
Two series of new benzoxazepines substituted with different alkyl amino ethyl chains were synthesized comprising synthetic steps of inter and intramolecular Mitsunobu reaction, lithium aluminium hydride (LAH) reduction, debenzylation, bimolecular nucleophilic substitution (SN2) reaction. The present study investigates the effect of a tyrosine-based benzoxazepine derivative in human breast cancer cells MCF-7 and MDA-MB-231 and in breast cancer animal model. The anti-proliferative effect of 15a on MCF-7 cells was associated with G1 cell-cycle arrest. This G1 growth arrest was followed by apoptosis as 15a dose dependently increased phosphatidylserine exposure, PARP cleavage and DNA fragmentation that are hallmarks of apoptotic cell death. Interestingly, 15a activated components of both intrinsic and extrinsic pathways of apoptosis characterized by activation of caspase-8 and -9, mitochondrial membrane depolarization and increase in Bax/Bcl2 ratio. However, use of selective caspase inhibitors revealed that the caspase-8-dependent pathway is the major contributor to 15a-induced apoptosis. Compound 15a also significantly reduced the growth of MCF-7 xenograft tumors in athymic nude mice. Together, 15a could serve as a base for the development of a new group of effective breast cancer therapeutics.  相似文献   
27.
The synthesis of a range of mono spiro and dispiro 1,2,4,5-tetraoxane dimers is described. Selected molecules were examined in in vitro assays to determine their antimalarial and anticancer potential. Our studies reveal that several molecules possess potent nanomolar antimalarial and single digit micromolar antiproliferative IC50s versus colon (HT29-AK and leukemia (HL60) cell lines.  相似文献   
28.
The mitogen-activated protein kinase (MAPK) is characterized by the presence of the T-E-Y, T-D-Y, and T-G-Y motifs in its activation loop region and plays a significant role in regulating diverse cellular responses in eukaryotic organisms. Availability of large-scale genome data in the fungal kingdom encouraged us to identify and analyse the fungal MAPK gene family consisting of 173 fungal species. The analysis of the MAPK gene family resulted in the discovery of several novel activation loop motifs (T-T-Y, T-I-Y, T-N-Y, T-H-Y, T-S-Y, K-G-Y, T-Q-Y, S-E-Y and S-D-Y) in fungal MAPKs. The phylogenetic analysis suggests that fungal MAPKs are non-polymorphic, had evolved from their common ancestors around 1500 million years ago, and are distantly related to plant MAPKs. We are the first to report the presence of nine novel activation loop motifs in fungal MAPKs. The specificity of the activation loop motif plays a significant role in controlling different growth and stress related pathways in fungi. Hence, the presences of these nine novel activation loop motifs in fungi are of special interest.  相似文献   
29.
30.
Alzheimer’s disease (AD) is a genetically complex, progressive and irreversible neurodegenerative disorder of the brain which involves multiple associated etiological targets. The complex pathogenesis of AD gave rise to multi-target-directed ligands (MTDLs) principle to combat this dreaded disease. Within this approach, the design and synthesis of hybrids prevailed greatly because of their capability to simultaneously target the intertwined pathogenesis components of the disease. The hybrids include pharmacophoric hybridization of two or more established chemical scaffolds endowed with the desired pharmacological properties into a single moiety. In AD, the primary foundation of medication therapy and drug design strategies includes the inhibition of cholinesterase (ChE) enzymes. Hence the development of ChE inhibition based hybrids is the central choice of AD medicinal chemistry research. To illustrate the progress of ChE inhibition based hybrids and novel targets, we reviewed the medicinal chemistry and pharmacological properties of the multi-target molecules published since 1998-December 2018. We hope that this article will allow the readers to easily follow the evolution of this prominent medicinal chemistry approach to develop a more efficient inhibitor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号