首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   881篇
  免费   86篇
  2021年   11篇
  2020年   9篇
  2019年   9篇
  2018年   11篇
  2017年   9篇
  2016年   20篇
  2015年   27篇
  2014年   26篇
  2013年   26篇
  2012年   22篇
  2011年   36篇
  2010年   16篇
  2009年   20篇
  2008年   39篇
  2007年   41篇
  2006年   19篇
  2005年   29篇
  2004年   25篇
  2003年   24篇
  2002年   32篇
  2001年   30篇
  2000年   33篇
  1999年   24篇
  1998年   10篇
  1997年   12篇
  1996年   15篇
  1995年   12篇
  1994年   16篇
  1992年   21篇
  1991年   22篇
  1990年   17篇
  1989年   8篇
  1988年   20篇
  1987年   15篇
  1986年   9篇
  1985年   13篇
  1984年   8篇
  1983年   11篇
  1982年   11篇
  1980年   6篇
  1979年   10篇
  1978年   13篇
  1977年   12篇
  1976年   12篇
  1974年   18篇
  1973年   20篇
  1972年   14篇
  1971年   5篇
  1969年   7篇
  1968年   7篇
排序方式: 共有967条查询结果,搜索用时 140 毫秒
101.
Biomarkers   总被引:1,自引:0,他引:1  
  相似文献   
102.
Achieving yield gains in wheat   总被引:5,自引:0,他引:5  
Wheat provides 20% of calories and protein consumed by humans. Recent genetic gains are <1% per annum (p.a.), insufficient to meet future demand. The Wheat Yield Consortium brings expertise in photosynthesis, crop adaptation and genetics to a common breeding platform. Theory suggest radiation use efficiency (RUE) of wheat could be increased ~50%; strategies include modifying specificity, catalytic rate and regulation of Rubisco, up-regulating Calvin cycle enzymes, introducing chloroplast CO(2) concentrating mechanisms, optimizing light and N distribution of canopies while minimizing photoinhibition, and increasing spike photosynthesis. Maximum yield expression will also require dynamic optimization of source: sink so that dry matter partitioning to reproductive structures is not at the cost of the roots, stems and leaves needed to maintain physiological and structural integrity. Crop development should favour spike fertility to maximize harvest index so phenology must be tailored to different photoperiods, and sensitivity to unpredictable weather must be modulated to reduce conservative responses that reduce harvest index. Strategic crossing of complementary physiological traits will be augmented with wide crossing, while genome-wide selection and high throughput phenotyping and genotyping will increase efficiency of progeny screening. To ensure investment in breeding achieves agronomic impact, sustainable crop management must also be promoted through crop improvement networks.  相似文献   
103.
Epithelial cells are linked by apicolateral junctions that are essential for tissue integrity. Epithelial cells also secrete a specialized apical extracellular matrix (ECM) that serves as a protective barrier. Some components of the apical ECM, such as mucins, can influence epithelial junction remodeling and disassembly during epithelial-to-mesenchymal transition (EMT). However, the molecular composition and biological roles of the apical ECM are not well understood. We identified a set of extracellular leucine-rich repeat only (eLRRon) proteins in C. elegans (LET-4 and EGG-6) that are expressed on the apical surfaces of epidermal cells and some tubular epithelia, including the excretory duct and pore. A previously characterized paralog, SYM-1, is also expressed in epidermal cells and secreted into the apical ECM. Related mammalian eLRRon proteins, such as decorin or LRRTM1-3, influence stromal ECM or synaptic junction organization, respectively. Mutants lacking one or more of the C. elegans epithelial eLRRon proteins show multiple defects in apical ECM organization, consistent with these proteins contributing to the embryonic sheath and cuticular ECM. Furthermore, epithelial junctions initially form in the correct locations, but then rupture at the time of cuticle secretion and remodeling of cell-matrix interactions. This work identifies epithelial eLRRon proteins as important components and organizers of the pre-cuticular and cuticular apical ECM, and adds to the small but growing body of evidence linking the apical ECM to epithelial junction stability. We propose that eLRRon-dependent apical ECM organization contributes to cell-cell adhesion and may modulate epithelial junction dynamics in both normal and disease situations.  相似文献   
104.
Mutagenesis is an important tool in crop improvement. However, the hexaploid genome of wheat (Triticum aestivum L.) presents problems in identifying desirable genetic changes based on phenotypic screening due to gene redundancy. TILLING (Targeting Induced Local Lesions IN Genomes), a powerful reverse genetic strategy that allows the detection of induced point mutations in individuals of the mutagenized populations, can address the major challenge of linking sequence information to the biological function of genes and can also identify novel variation for crop breeding. Wheat is especially well-suited for TILLING due to the high mutation densities tolerated by polyploids. However, only a few wheat TILLING populations are currently available in the world, which is far from satisfying the requirement of researchers and breeders in different growing environments. In addition, current TILLING screening protocols require costly fluorescence detection systems, limiting their use, especially in developing countries. We developed a new TILLING resource comprising 2610 M(2) mutants in a common wheat cultivar 'Jinmai 47'. Numerous phenotypes with altered morphological and agronomic traits were observed from the M(2) and M(3) lines in the field. To simplify the procedure and decrease costs, we use unlabeled primers and either non-denaturing polyacrylamide gels or agarose gels for mutation detection. The value of this new resource was tested using PCR with RAPD and Intron-spliced junction (ISJ) primers, and also TILLING in three selected candidate genes, in 300 and 512 mutant lines, revealing high mutation densities of 1/34 kb by RAPD/ISJ analysis and 1/47 kb by TILLING. In total, 31 novel alleles were identified in the 3 targeted genes and confirmed by sequencing. The results indicate that this mutant population represents a useful resource for the wheat research community. We hope that the use of this reverse genetics resource will provide novel allelic diversity for wheat improvement and functional genomics.  相似文献   
105.
In photosynthesis Rubisco catalyses the assimilation of CO(2) by the carboxylation of ribulose-1,5-bisphosphate. However, the catalytic properties of Rubisco are not optimal for current or projected environments and limit the efficiency of photosynthesis. Rubisco activity is highly regulated in response to short-term fluctuations in the environment, although such regulation may not be optimally poised for crop productivity. The regulation of Rubisco activity in higher plants is reviewed here, including the role of Rubisco activase, tight binding inhibitors, and the impact of abiotic stress upon them.  相似文献   
106.
The use of 17-beta-oestradiol, testosterone, progesterone, zearanol, trenbolone acetate and melengesterol acetate in animal feed as growth promoters has been banned in the European Union since 1989. However, the data available on their genotoxicity is limited. To bridge this gap the present study was carried out with the aim of evaluating these hormones for their ability to induce aneuploidy. Aneuploidy has been recently considered sufficiently important to be included in the routine testing of chemicals and radiation. These types of numerical chromosomal aberrations may arise by at least two mechanisms, chromosome loss and non-disjunction. Over the past few years, the cytokinesis blocked micronucleus (CBMN) technique has evolved into a robust assay for the detection of aneuploidy induction. At the present time, it is the only assay which can reliably detect both chromosome loss and non-disjunction when the basic methodology is coupled with appropriate molecular probing techniques such as immunoflourescent labelling of kinetochores and Fluorescence in situ Hybridisation. In this present study, aneuploidy induction by three groups of hormones was studied using CBMN assay coupled with Fluorescence in situ Hybridisation. The results from the present study demonstrate that 17-beta-oestradiol, diethylstilboestrol, progesterone and testosterone are genotoxic and induce aneuploidy by non-disjunctional mechanism, whereas trenbolone is also genotoxic by a clastogenic mechanism. However, melengesterol acetate and zearanol proved to be non-genotoxic in vitro.  相似文献   
107.
Mouse oocytes isolated from large antral follicles were exposed to a wide range of concentrations of bisphenol A (BPA) during maturation in vitro (50 ng/ml to 10 microg/ml BPA in medium). Exposure to high concentrations of BPA (10 microg/ml) affected spindle formation, distribution of pericentriolar material and chromosome alignment on the spindle (termed congression failure), and caused a significant meiotic arrest. However, BPA did not increase hyperploidy at meiosis II at any tested concentration. Some but not all meiosis I arrested oocytes had MAD2-positive foci at centromeres of chromosomes in bivalents, suggesting that they had failed to pass the spindle checkpoint control. In a second set of experiments prepubertal mice were exposed sub-chronically for 7 days to low BPA by daily oral administration, followed by in vitro maturation of the denuded oocytes to metaphase II in the absence of BPA, as this treatment protocol was previously reported to induce chromosome congression failure and therefore suspected to cause aneuploidy in oocytes. The sub-chronic exposure subtly affected spindle morphology and oocyte maturation. However, as with the exposure in vitro, there was no evidence that low BPA doses increased hyperploidy at meiosis II. In conclusion, the data suggest that mouse oocytes from mice respond to BPA-induced disturbances in spindle formation by induction of meiotic arrest. This response might result from an effective checkpoint mechanism preventing the occurrence of chromosome malsegregation and aneuploidy. Low chronic BPA exposure in vivo as such does not appear to pose a risk for induction of errors in chromosome segregation at first meiosis in mouse oocytes. Additional factors besides BPA may have caused the high rate of congression failure and the temporary increase in hyperploidy in mouse metaphase II oocytes reported previously.  相似文献   
108.
A complete hazard and risk assessment of any known genotoxin requires the evaluation of the mutagenic, clastogenic and aneugenic potential of the compound. In the case of aneugenic chemicals, mechanism of action (MOA) and quantitative responses may be investigated by studying their effects upon the fidelity of functioning of components of the cell cycle. These present studies have demonstrated that the plastics component bisphenol-A (BPA) and the natural pesticide rotenone induce micronuclei and modify the functioning of the microtubule organising centres (MTOCs) of the mitotic spindles of cultured mammalian cells in a dose-dependent manner. BPA and rotenone were used as model compounds in an investigation of dose response relationships for the hazard/risk assessment of aneugens. Thresholds of action for the induction of aneuploidy have been predicted for spindle poisons on the basis of the multiple targets, which may need disabling before a quantitative response can be detected. The cytokinesis blocked micronucleus assay (CBMA) methodology was utilised in the human lymphoblastoid cell lines AHH-1, MCL-5 and Chinese hamster V79 cell lines. A no observable effect level (NOEL) at 10.8 microg/ml BPA was observed for MN induction. Rotenone showed a small increase in MN induction with the first significant effect at 0.25 ng/ml in V79 cells but there was no significant effect in the metabolically competent cell line, MCL-5. For a mechanistic evaluation of the aneugenic effects of BPA and rotenone, fluorescently labelled antibodies were used to visualise microtubules (alpha-tubulin) and MTOCs (gamma-tubulin). The NOELs for tripolar mitotic spindle induction in V79 cells were 7 microg/ml for BPA and 80 pg/ml for rotenone (concentrations which produced similar changes to mitotic index (M.I.)). Interestingly there was close proximity to the NOEL of 10.8 microg/ml BPA for micronucleus (MN) induction in the human lymphoblastoid AHH-1 cell. Multiple MTOCs can therefore be predicted as a possible mechanism for MN induction. The similarity in concentration inducing tripolar mitosis, M.I. and MN changes suggests immunofluorescence analysis to be a useful dose setting assay with emphasis on the mechanism.  相似文献   
109.
A reversed phase HPLC-MS/MS method has been developed and validated for the quantitative bioanalysis of acetaminophen in dried blood spots (DBS) prepared from small volumes (15 microL) of dog blood. Samples were extracted for analysis with methanol. Detection was by positive ion TurboIonSpray ionisation combined with selected reaction monitoring MS. The analytical concentration range was 0.1-50 microg/mL. The intra-day precision and bias values were both less than 15%. Acetaminophen was stable in DBS stored at room temperature for at least 10 days. The methodology was applied in a toxicokinetic (TK) study where the data obtained from DBS samples was physiologically comparable with results from duplicate blood samples (diluted 1:1 (v/v) with water) analysed using identical HPLC-MS/MS conditions. This work demonstrates that quantitative analysis of a drug extracted from DBS can provide high quality TK data while minimising the volume of blood withdrawn from experimental animals, to an order of magnitude lower than is current practice in the pharmaceutical industry. This is the first reported application of DBS analysis to a TK study in support of a safety assessment study. The success of this and similar, related studies has led to the intent to apply DBS technology as the recommended analytical approach for the assessment of pharmacokinetics (PK)/TK for all new oral small molecule drug candidates, which have previously demonstrated a successful bioanalytical validation.  相似文献   
110.
The phosphoinositide 3-kinase signaling pathway has been implicated in a range of T lymphocyte cellular functions, particularly growth, proliferation, cytokine secretion, and survival. Dysregulation of phosphoinositide 3-kinase-dependent signaling and function in leukocytes, including B and T lymphocytes, has been implicated in many inflammatory and autoimmune diseases. As befits a pivotal signaling cascade, several mechanisms exist to ensure that the pathway is tightly regulated. This minireview focuses on two lipid phosphatases, viz. the 3'-phosphatase PTEN (phosphatase and tensin homolog deleted on chromosome 10) and SHIP (Src homology 2 domain-containing inositol-5-phosphatase). We discuss their role in regulating T lymphocyte signaling as well their potential as future therapeutic targets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号