首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   388篇
  免费   15篇
  2022年   3篇
  2021年   9篇
  2020年   6篇
  2019年   4篇
  2018年   6篇
  2017年   9篇
  2016年   6篇
  2015年   22篇
  2014年   15篇
  2013年   21篇
  2012年   28篇
  2011年   32篇
  2010年   27篇
  2009年   12篇
  2008年   12篇
  2007年   19篇
  2006年   23篇
  2005年   16篇
  2004年   11篇
  2003年   9篇
  2002年   16篇
  2001年   11篇
  2000年   7篇
  1999年   10篇
  1998年   1篇
  1997年   2篇
  1996年   4篇
  1995年   1篇
  1994年   2篇
  1993年   4篇
  1992年   2篇
  1991年   7篇
  1990年   8篇
  1989年   2篇
  1988年   3篇
  1987年   4篇
  1986年   3篇
  1985年   6篇
  1984年   3篇
  1983年   3篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1977年   3篇
  1974年   3篇
  1972年   3篇
  1966年   1篇
  1965年   1篇
排序方式: 共有403条查询结果,搜索用时 109 毫秒
61.
62.
Infectious and inflammatory diseases in the intestine remain a serious threat for patients world-wide. Reprogramming of the intestinal epithelium towards a protective effector state is important to manage inflammation and immunity and can be therapeutically targeted. The role of epigenetic regulatory enzymes within these processes is not yet defined. Here, we use a mouse model that has an intestinal-epithelial specific deletion of the histone demethylase Lsd1 (cKO mice), which maintains the epithelium in a fixed reparative state. Challenge of cKO mice with bacteria-induced colitis or a helminth infection model both resulted in increased pathogenesis. Mechanistically, we discovered that LSD1 is important for goblet cell maturation and goblet-cell effector molecules such as RELMß. We propose that this may be in part mediated by directly controlling genes that facilitate cytoskeletal organization, which is important in goblet cell biology. This study therefore identifies intestinal-epithelial epigenetic regulation by LSD1 as a critical element in host protection from infection.  相似文献   
63.
Saroglitazar, being a dual PPAR-α/γ agonist, has shown beneficial effect in diabetic dyslipidemia and hypertriglyceridemia. Fibrates are commonly used to treat severe hypertriglyceridemia. However, the effect of saroglitazar in patients with moderate to severe hypertriglyceridemia was not evaluated. We conducted a study to compare the efficacy and safety of saroglitazar (4 mg) with fenofibrate (160 mg) in patients with moderate to severe hypertriglyceridemia. This was a multicenter, randomized, double-blinded, double-dummy, active-control, and noninferiority trial in adult patients with fasting triglyceride (TG) levels of 500–1,500 mg/dl. The patients were randomized in a 1:1 ratio to receive daily dose of saroglitazar or fenofibrate for 12 weeks. The primary efficacy end point was the percent change in TG levels at week 12 relative to baseline. The study comprised of 41 patients in the saroglitazar group and 41 patients in the fenofibrate group. We found that the percent reduction from baseline in TG levels at week 12 was significantly higher in the saroglitazar group (least square mean = ?55.3%; SE = 4.9) compared with the fenofibrate group (least square mean = ?41.1%; SE = 4.9; P = 0.048). Overall, 37 treatment-emergent adverse events (AEs) were reported in 24 patients (saroglitazar: 13; fenofibrate: 11). No serious AEs were reported, and no patient discontinued the study because of AEs. We conclude that saroglitazar (4 mg) is noninferior to fenofibrate (160 mg) in reducing TG levels after 12 weeks of treatment, was safe, and well tolerated.  相似文献   
64.
Differentiation of neural stem cells (NSC’s) to mature and functional neurons requires coordinated expression of mRNA, microRNAs (miRNAs) and regulatory proteins. Our earlier unbiased miRNA profiling studies have identified miR-200, miR-34 and miR-221/222 as maximally up-regulated miRNA families in differentiating PC12 cells and demonstrated the capability of miR-200 family in inducing neuronal differentiation (J. Neurochem, 2015, 133, 640–652). In present study, we have investigated role of miR-34 family in neuronal differentiation and identified P53 as mediator of nerve growth factor (NGF) induced miR-34a expression in differentiating PC12 cells. Our studies have shown that NGF induced miR-34a, arrests proliferating PC12 cells to G1 phase, which is pre-requisite for neuronal differentiation. Our studies have also shown that increased expression of miR-34a controls the P53 level in differentiated PC12 cells in feedback inhibition manner, which probably prevents differentiated cells from P53 induced apoptosis. Expression profiling of miR-34 family in different neuronal, non-neuronal and developing cells have identified differentiated and aged brain cells as richest source of miR-34, which also indicates that higher expression of miR-34 family helps in maintaining the mature neurons in non-proliferative stage. In conclusion, our studies have shown that miR-34 is brain enriched miRNA family, which up-regulates with neuronal maturation and brain ageing and co-operative regulation of P53 and miR-34a helps in neuronal differentiation by arresting cells in G1 phase.  相似文献   
65.
Split-hand/split-foot malformation is a rare limb malformation with median clefts of the hands and feet and aplasia/hypoplasia of the phalanges, metacarpals and metatarsals. When present as an isolated anomaly, it is usually inherited as an autosomal dominant form. We report a case of autosomal recessive inheritance and discuss the antenatal diagnosis, genetic counseling and treatment for the malformation.  相似文献   
66.
An enhanced intracellular level of Nitric oxide (NO) is essential to ameliorate several pathological conditions of heart and vasculature necessitating the activation of NOS. We have projected in this report the acetylation of eNOS by polyphenolic peracetates (PA) catalyzed by the novel enzyme acetoxy drug: protein transacetylase (TAase) discovered in our laboratory as an unambiguous way of activating NOS which results in the manifestation of physiological action. The human platelet was chosen as the experimental system in order to validate the aforementioned proposition. PA caused profound irreversible activation of platelet NADPH cytochrome c reductase mediated by TAase. The convincing biochemical evidences are presented to show that PA could cause acetylation of the reductase domain of NOS leading to the activation of eNOS in tune with their specificities to platelet TAase. As a result, the enhanced level of NO due to activation of platelet eNOS by PA was found to inhibit the ADP-induced platelet aggregation. The present studies highlight for the first time the role of PA as the novel potent agent for enhancing the intracellular NO levels.  相似文献   
67.
The effect of 7,8-diacetoxy-4-methylcoumarin (DAMC) has been studied on hepatic NADPH cytochrome C reductase-- an enzyme participating in the microsomal electron transport. The preincubation of liver microsomes with DAMC resulted in a time-dependent activation of NADPH cytochrome C reductase. The catalytic activity of the enzyme enhanced nearly 600% by 25 microM concentration of DAMC after 10 min of preincubation. The action of DAMC on the reductase resulted in enhanced v(max) while Km remained constant. A plot of 1/v(max) as a function of DAMC concentration resulted in a non-linear, but rectangular hyperbola indicative of hyperbolic activation. DAMC was also proved to be effective in significantly enhancing the activity of NADPH cytochrome C reductase in vivo. 7,8-Dihydroxy-4-methylcoumarin (DHMC), the deacetylated product of DAMC failed to irreversibly activate the enzyme. The activation effect of DAMC upon the enzyme was abolished by p-hydroxymercury benzoate. The role of a transacetylase in transferring the acetyl group of DAMC to the amino acid(s) of the active site of NADPH cytochrome C reductase causing irreversible enzyme activation is enunciated.  相似文献   
68.
Myelodysplastic syndromes (MDS) are characterized by abnormal and dysplastic maturation of all blood lineages. Even though epigenetic alterations have been seen in MDS marrow progenitors, very little is known about the molecular alterations in dysplastic peripheral blood cells. We analyzed the methylome of MDS leukocytes by the HELP assay and determined that it was globally distinct from age-matched controls and was characterized by numerous novel, aberrant hypermethylated marks that were located mainly outside of CpG islands and preferentially affected GTPase regulators and other cancer-related pathways. Additionally, array comparative genomic hybridization revealed that novel as well as previously characterized deletions and amplifications could also be visualized in peripheral blood leukocytes, thus potentially reducing the need for bone marrow samples for future studies. Using integrative analysis, potentially pathogenic genes silenced by genetic deletions and aberrant hypermethylation in different patients were identified. DOCK4, a GTPase regulator located in the commonly deleted 7q31 region, was identified by this unbiased approach. Significant hypermethylation and reduced expression of DOCK4 in MDS bone marrow stem cells was observed in two large independent datasets, providing further validation of our findings. Finally, DOCK4 knockdown in primary marrow CD34(+) stem cells led to decreased erythroid colony formation and increased apoptosis, thus recapitulating the bone marrow failure seen in MDS. These findings reveal widespread novel epigenetic alterations in myelodysplastic leukocytes and implicate DOCK4 as a pathogenic gene located on the 7q chromosomal region.  相似文献   
69.
In chronic alcoholism, brain shrinkage and cognitive defects because of neuronal death are well established, although the sequence of molecular events has not been fully explored yet. We explored the role of microRNAs (miRNAs) in ethanol-induced apoptosis of neuronal cells. Ethanol-sensitive miRNAs in SH-SY5Y, a human neuroblastoma cell line, were identified using real-time PCR-based TaqMan low-density arrays. Long-term exposure to ethanol (0.5% v/v for 72 h) produced a maximum increase in expression of miR-497 (474-fold) and miR-302b (322-fold). Similar to SH-SY5Y, long-term exposure to ethanol induced miR-497 and miR-302b in IMR-32, another human neuroblastoma cell line. Using in silico approaches, BCL2 and cyclin D2 (CCND2) were identified as probable target genes of these miRNAs. Cotransfection studies with 3'-UTR of these genes and miRNA mimics have demonstrated that BCL2 is a direct target of miR-497 and that CCND2 is regulated negatively by either miR-302b or miR-497. Overexpression of either miR-497 or miR-302b reduced expression of their identified target genes and increased caspase 3-mediated apoptosis of SH-SY5Y cells. However, overexpression of only miR-497 increased reactive oxygen species formation, disrupted mitochondrial membrane potential, and induced cytochrome c release (mitochondria-related events of apoptosis). Moreover, ethanol induced changes in miRNAs, and their target genes were substantially prevented by pre-exposure to GSK-3B inhibitors. In conclusion, our studies have shown that ethanol-induced neuronal apoptosis follows both the mitochondria-mediated (miR-497- and BCL2-mediated) and non-mitochondria-mediated (miR-302b- and CCND2-mediated) pathway.  相似文献   
70.
Capabilities of lipases from Candida antarctica, Candida rugosa and porcine pancreas have been evaluated for regioselective acetylation of 2-phenyl-4-(D-arabino-tetrahydroxybutyl)-2H-1,2,3-triazole, 2-phenyl-4-(D-arabino-O-1',2'-isopropylidene-3',4'-dihydroxybutyl)-2H-1,2,3-triazole and 2-phenyl-4-(D-threo-trihydroxypropyl)-2H-1,2,3-triazole, precursors for the synthesis of triazolylacyclonucleosides. C. antarctica lipase and porcine pancreatic lipase exhibited exclusive selectivity for the acetylation of primary hydroxyl group over secondary hydroxyl group(s) in all the three cases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号