首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   285篇
  免费   29篇
  2023年   2篇
  2022年   1篇
  2021年   7篇
  2020年   6篇
  2019年   6篇
  2018年   13篇
  2017年   10篇
  2016年   13篇
  2015年   12篇
  2014年   5篇
  2013年   8篇
  2012年   9篇
  2011年   14篇
  2010年   8篇
  2009年   5篇
  2008年   14篇
  2007年   14篇
  2006年   11篇
  2005年   5篇
  2004年   7篇
  2003年   9篇
  2002年   13篇
  2001年   13篇
  2000年   9篇
  1999年   10篇
  1998年   9篇
  1997年   2篇
  1995年   1篇
  1994年   1篇
  1993年   4篇
  1992年   12篇
  1991年   5篇
  1990年   8篇
  1989年   5篇
  1988年   7篇
  1987年   6篇
  1986年   3篇
  1985年   4篇
  1984年   4篇
  1983年   3篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   4篇
  1975年   1篇
  1968年   2篇
排序方式: 共有314条查询结果,搜索用时 31 毫秒
11.
Previous analysis has emphasized the correlation between primary structures of class I HLA molecules and their patterns of serologic cross-reactivity. Here we describe the structures of two serologic groups of HLA-B alleles for which this is not the case. HLA-B45, an allele associated with black populations, is serologically paired with B44 in the B12 group; its structure, however, is divergent from that of B44 but closely related to B50. The BN21 (B*4005) allele is associated with native Americans and is serologically grouped with B50 in the B21 group; its structure, however, is more closely related to alleles of the B40 group. The B44 and B45 serologically cross-reactive molecules differ at seven functional positions of the Ag recognition site; the B50 and BN21 molecules differ at four such residues. These differences are predicted to alter peptide presentation and be capable of eliciting strong alloreactive T cell responses. For these pairs of B12 and B21 Ag, serology appears dominated by epitopes formed by short sequences of the alpha 2 helix which have been shuffled by recombination between alleles. The implications of these results for HLA matching in transplantation are discussed.  相似文献   
12.
Human natural killer (NK) cells are essential for controlling infection, cancer, and fetal development. NK cell functions are modulated by interactions between polymorphic inhibitory killer cell immunoglobulin-like receptors (KIR) and polymorphic HLA-A, -B, and -C ligands expressed on tissue cells. All HLA-C alleles encode a KIR ligand and contribute to reproduction and immunity. In contrast, only some HLA-A and -B alleles encode KIR ligands and they focus on immunity. By high-resolution analysis of KIR and HLA-A, -B, and -C genes, we show that the Chinese Southern Han (CHS) are significantly enriched for interactions between inhibitory KIR and HLA-A and -B. This enrichment has had substantial input through population admixture with neighboring populations, who contributed HLA class I haplotypes expressing the KIR ligands B*46:01 and B*58:01, which subsequently rose to high frequency by natural selection. Consequently, over 80% of Southern Han HLA haplotypes encode more than one KIR ligand. Complementing the high number of KIR ligands, the CHS KIR locus combines a high frequency of genes expressing potent inhibitory KIR, with a low frequency of those expressing activating KIR. The Southern Han centromeric KIR region encodes strong, conserved, inhibitory HLA-C-specific receptors, and the telomeric region provides a high number and diversity of inhibitory HLA-A and -B-specific receptors. In all these characteristics, the CHS represent other East Asians, whose NK cell repertoires are thus enhanced in quantity, diversity, and effector strength, likely augmenting resistance to endemic viral infections.  相似文献   
13.
Visceral leishmaniasis (VL) is a vector-borne disease affecting humans and domestic animals that constitutes a serious public health problem in many countries. Although many antigens have been examined so far as protein- or DNA-based vaccines, none of them conferred complete long-term protection. The use of the lizard non-pathogenic to humans Leishmania (L.) tarentolae species as a live vaccine vector to deliver specific Leishmania antigens is a recent approach that needs to be explored further. In this study, we evaluated the effectiveness of live vaccination in protecting BALB/c mice against L. infantum infection using prime-boost regimens, namely Live/Live and DNA/Live. As a live vaccine, we used recombinant L. tarentolae expressing the L. donovani A2 antigen along with cysteine proteinases (CPA and CPB without its unusual C-terminal extension (CPB-CTE)) as a tri-fusion gene. For DNA priming, the tri-fusion gene was encoded in pcDNA formulated with cationic solid lipid nanoparticles (cSLN) acting as an adjuvant. At different time points post-challenge, parasite burden and histopathological changes as well as humoral and cellular immune responses were assessed. Our results showed that immunization with both prime-boost A2-CPA-CPB-CTE-recombinant L. tarentolae protects BALB/c mice against L. infantum challenge. This protective immunity is associated with a Th1-type immune response due to high levels of IFN-γ production prior and after challenge and with lower levels of IL-10 production after challenge, leading to a significantly higher IFN-γ/IL-10 ratio compared to the control groups. Moreover, this immunization elicited high IgG1 and IgG2a humoral immune responses. Protection in mice was also correlated with a high nitric oxide production and low parasite burden. Altogether, these results indicate the promise of the A2-CPA-CPB-CTE-recombinant L. tarentolae as a safe live vaccine candidate against VL.  相似文献   
14.
Interactions between HLA class I molecules and killer-cell immunoglobulin-like receptors (KIR) control natural killer cell (NK) functions in immunity and reproduction. Encoded by genes on different chromosomes, these polymorphic ligands and receptors correlate highly with disease resistance and susceptibility. Although studied at low-resolution in many populations, high-resolution analysis of combinatorial diversity of HLA class I and KIR is limited to Asian and Amerindian populations with low genetic diversity. At the other end of the spectrum is the West African population investigated here: we studied 235 individuals, including 104 mother-child pairs, from the Ga-Adangbe of Ghana. This population has a rich diversity of 175 KIR variants forming 208 KIR haplotypes, and 81 HLA-A, -B and -C variants forming 190 HLA class I haplotypes. Each individual we studied has a unique compound genotype of HLA class I and KIR, forming 1–14 functional ligand-receptor interactions. Maintaining this exceptionally high polymorphism is balancing selection. The centromeric region of the KIR locus, encoding HLA-C receptors, is highly diverse whereas the telomeric region encoding Bw4-specific KIR3DL1, lacks diversity in Africans. Present in the Ga-Adangbe are high frequencies of Bw4-bearing HLA-B*53:01 and Bw4-lacking HLA-B*35:01, which otherwise are identical. Balancing selection at key residues maintains numerous HLA-B allotypes having and lacking Bw4, and also those of stronger and weaker interaction with LILRB1, a KIR-related receptor. Correspondingly, there is a balance at key residues of KIR3DL1 that modulate its level of cell-surface expression. Thus, capacity to interact with NK cells synergizes with peptide binding diversity to drive HLA-B allele frequency distribution. These features of KIR and HLA are consistent with ongoing co-evolution and selection imposed by a pathogen endemic to West Africa. Because of the prevalence of malaria in the Ga-Adangbe and previous associations of cerebral malaria with HLA-B*53:01 and KIR, Plasmodium falciparum is a candidate pathogen.  相似文献   
15.
The Caribbean basin is home to some of the most complex interactions in recent history among previously diverged human populations. Here, we investigate the population genetic history of this region by characterizing patterns of genome-wide variation among 330 individuals from three of the Greater Antilles (Cuba, Puerto Rico, Hispaniola), two mainland (Honduras, Colombia), and three Native South American (Yukpa, Bari, and Warao) populations. We combine these data with a unique database of genomic variation in over 3,000 individuals from diverse European, African, and Native American populations. We use local ancestry inference and tract length distributions to test different demographic scenarios for the pre- and post-colonial history of the region. We develop a novel ancestry-specific PCA (ASPCA) method to reconstruct the sub-continental origin of Native American, European, and African haplotypes from admixed genomes. We find that the most likely source of the indigenous ancestry in Caribbean islanders is a Native South American component shared among inland Amazonian tribes, Central America, and the Yucatan peninsula, suggesting extensive gene flow across the Caribbean in pre-Columbian times. We find evidence of two pulses of African migration. The first pulse—which today is reflected by shorter, older ancestry tracts—consists of a genetic component more similar to coastal West African regions involved in early stages of the trans-Atlantic slave trade. The second pulse—reflected by longer, younger tracts—is more similar to present-day West-Central African populations, supporting historical records of later transatlantic deportation. Surprisingly, we also identify a Latino-specific European component that has significantly diverged from its parental Iberian source populations, presumably as a result of small European founder population size. We demonstrate that the ancestral components in admixed genomes can be traced back to distinct sub-continental source populations with far greater resolution than previously thought, even when limited pre-Columbian Caribbean haplotypes have survived.  相似文献   
16.
17.
A series of new 4-(3-(4-substitutedphenyl)-3a,4-dihydro-3H-indeno[1,2-c]pyrazol-2-yl) benzenesulfonamides (712) was synthesized starting from 2-(4-substitutedbenzylidene)-2,3-dihydro-1H-inden-1-one (16) and 4-hydrazinobenzenesulfonamide. The substituted benzaldehydes from which the key intermediate was prepared by introducing 2- or 4-substituents such as fluorine, hydroxy, methoxy, or the 3,4,5-trimethoxy moieties. The compounds were tested for their cytotoxicity, tumor-specificity and potential as carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. The 3,4,5-trimethoxy and the 4-hydroxy derivatives showed interesting cytotoxic activities, which may be crucial for further anti-tumor activity studies, whereas some of these sulfonamides strongly inhibited both human (h) cytosolic isoforms hCA I and II.  相似文献   
18.
The development of novel leishmanicidal agents that are capable of being replaced by the available therapeutic options has become a priority. In the present study, the synthesis and leishmanicidal activity of a series of 5-(nitroheteroaryl-2-yl)-1,3,4-thiadiazole derivatives are described. All compounds appeared to be potent anti-leishmanial agents against both promastigote and amastigote forms of Leishmania major (L. major). Amongst the synthesized compounds, 2-([1,4′-bipiperidin]-1′-yl)-5-(5-nitrofuran-2-yl)-1,3,4-thiadiazole (IIa) and 1-(5-(1-methyl-5-nitro-1H-imidazole-2-yl)-1,3,4-thiadiazol-2-yl)-4-(piperidine-1-yl) piperidine (IIc) are the most effective. Infection index was statistically declined in the presence of all compounds. The analysis of redox-related factors revealed that exposure of L. major cells to IIa and IIc led to an increase in reactive oxygen species (ROS). Furthermore, two compounds were able to increase ROS and NO levels in infected macrophages in a dose-independent manner. In addition, we showed that these compounds induced cell death in promastigotes. Altogether, our results indicated the anti-leishmanial potential of IIa and IIc is mediated by apoptosis through an imbalance in the redox system resulting in the elevation of ROS. This new class of compound seems to hold great promise for the development of new and useful anti-leishmanial agents.  相似文献   
19.
KIR3DL1 and KIR3DL2 are NK cell receptors for polymorphic HLA-B and -A determinants. The proportion of NK cells that bind anti-KIR3DL1-specific Ab DX9 and their level of binding vary between individuals. To determine whether these differences are due to KIR polymorphism, we assessed KIR3D gene diversity in unrelated individuals and families. Both KIR3DL1 and KIR3DL2 are highly polymorphic genes, with KIR3DS1 segregating like an allele of KIR3DL1. A KIR haplotype lacking KIR3DL1 and KIR3DS1 was defined. The two KIR3DL1 alleles of a heterozygous donor were expressed by different, but overlapping, subsets of NK cell clones. Sequence variation in KIR3DL1 and KIR3DL2 appear distinct; recombination is more evident in KIR3DL1, and point mutation is more evident in KIR3DL2. The KIR3DL1 genotype correlates well with levels of DX9 binding by NK cells, but not with the frequency of DX9-binding cells. Different KIR3DL1 alleles determine high, low, and no binding of DX9 Ab. Consequently, heterozygotes for high and low binding KIR3DL1 alleles have distinct subpopulations of NK cells that bind DX9 at high and low levels, giving characteristic bimodal distributions in flow cytometry. The Z27 Ab gave binding patterns similar to those of DX9. Four KIR3DL1 alleles producing high DX9 binding phenotypes were distinguished from four alleles producing low or no binding phenotypes by substitution at one or more of four positions in the encoded protein: 182 and 283 in the extracellular Ig-like domains, 320 in the transmembrane region, and 373 in the cytoplasmic tail.  相似文献   
20.
 Previous studies of class I MHC molecules have shown that the owl monkey (Aotus) possesses at least two variants of the β2-microglobulin (β2m) protein. These two variants have different isoelectric points, and exhibit differential reactivity with the monoclonal antibody W6/32. We report cDNA sequences of the B2m gene, from W6/32-positive and W6/32-negative Aotus cell lines. The two β2m variants we identified exhibit a single amino acid difference at position three. An arginine residue at position 3 was correlated with W6/32 reactivity, whereas histidine was associated with non-reactivity. W6/32 reactivity was conferred to a W6/32-negative Aotus cell line when it was transfected with the B2m from the W6/32-positive cell line. Residue 3 of β2m is located at the surface of the class I molecule. It is also close to position 121 of the MHC class I heavy chain, which has previously been shown to influence W6/32 antibody binding. We conclude that W6/32 binds a compact epitope on the class I molecule that includes both residue 3 of β2m and residue 121 of the heavy chain. We examined the distribution of the two β2m motifs in a sample Aotus population using an allele-specific polymerase chain reaction assay. The pattern of β2m segregation we observed matches that which was defined previously by serology. Additionally, we identified laboratory-born hybrid animals who possess both variants of β2m. Received: 1 April 1998 / Received: 3 July 1998  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号