首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   4篇
  2023年   2篇
  2022年   1篇
  2021年   4篇
  2020年   4篇
  2019年   1篇
  2018年   6篇
  2017年   2篇
  2016年   1篇
  2015年   4篇
  2014年   5篇
  2013年   11篇
  2012年   13篇
  2011年   9篇
  2010年   6篇
  2009年   7篇
  2008年   6篇
  2007年   6篇
  2006年   5篇
  2005年   5篇
  2004年   8篇
  2003年   5篇
  2002年   4篇
  2001年   2篇
  1995年   1篇
  1988年   2篇
排序方式: 共有120条查询结果,搜索用时 21 毫秒
91.
Molecular Biology Reports - Aberrant expression of mTOR signaling pathway is significantly associated with gastric cancer. However, the effect of smoking on mTOR expression and its downstream...  相似文献   
92.
This study investigated a set of new potential antidiabetes agents. Derivatives of usnic acid were designed and synthesized. These analogs and nineteen benzylidene analogs from a previous study were evaluated for enzyme inhibition of α-glucosidase. Analogs synthesized using the Dakin oxidative method displayed stronger activity than the pristine usnic acid (IC50>200 μM). Methyl (2E,3R)-7-acetyl-4,6-dihydroxy-2-(2-methoxy-2-oxoethylidene)-3,5-dimethyl-2,3-dihydro-1-benzofuran-3-carboxylate ( 6b ) and 1,1′-(2,4,6-trihydroxy-5-methyl-1,3-phenylene)di(ethan-1-one) ( 6e ) were more potent than an acarbose positive control (IC50 93.6±0.49 μM), with IC50 values of 42.6±1.30 and 90.8±0.32 μM, respectively. Most of the compounds synthesized from the benzylidene series displayed promising activity. (9bR)-2,6-Bis[(2E)-3-(2-chlorophenyl)prop-2-enoyl]-3,7,9-trihydroxy-8,9b-dimethyldibenzo[b,d]furan-1(9bH)-one ( 1c ), (9bR)-3,7,9-trihydroxy-8,9b-dimethyl-2,6-bis[(2E)-3-phenylprop-2-enoyl]dibenzo[b,d]furan-1(9bH)-one ( 1g ), (9bR)-2-acetyl-6-[(2E)-3-(2-chlorophenyl)prop-2-enoyl]-3,7,9-trihydroxy-8,9b-dimethyldibenzo[b,d]furan-1(9bH)-one ( 2d ), (9bR)-2-acetyl-6-[(2E)-3-(3-chlorophenyl)prop-2-enoyl]-3,7,9-trihydroxy-8,9b-dimethyldibenzo[b,d]furan-1(9bH)-one ( 2e ), (6bR)-8-acetyl-3-(4-chlorophenyl)-6,9-dihydroxy-5,6b-dimethyl-2,3-dihydro-1H-[1]benzofuro[2,3-f][1]benzopyran-1,7(6bH)-dione ( 3e ), (6bR)-8-acetyl-6,9-dihydroxy-5,6b-dimethyl-3-phenyl-2,3-dihydro-1H-[1]benzofuro[2,3-f][1]benzopyran-1,7(6bH)-dione ( 3h ), (6bR)-3-(2-chlorophenyl)-8-[(2E)-3-(2-chlorophenyl)prop-2-enoyl]-6,9-dihydroxy-5,6b-dimethyl-2,3-dihydro-1H-[1]benzofuro[2,3-f][1]benzopyran-1,7(6bH)-dione ( 4b ), and (9bR)-6-acetyl-3,7,9-trihydroxy-8,9b-dimethyl-2-[(2E)-3-phenylprop-2-enoyl]dibenzo[b,d]furan-1(9bH)-one ( 5c ) were the most potent α-glucosidase enzyme inhibitors, with IC50 values of 7.0±0.24, 15.5±0.49, 7.5±0.92, 10.9±0.56, 1.5±0.62, 15.3±0.54, 19.0±1.00, and 12.3±0.53 μM, respectively.  相似文献   
93.
Basu P  Brown KM  Pal A 《Plant physiology》2011,155(4):2056-2065
Vertical placement of roots within the soil determines their efficiency of acquisition of heterogeneous belowground resources. This study quantifies the architectural traits of seedling basal roots of bean (Phaseolus vulgaris), and shows that the distribution of root tips at different depths results from a combined effect of both basal root growth angle (BRGA) and root length. Based on emergence locations, the basal roots are classified in three zones, upper, middle, and lower, with each zone having distinct architectural traits. The genotypes characterized as shallow on BRGA alone produced basal roots with higher BRGA, greater length, and more vertically distributed roots than deep genotypes, thereby establishing root depth as a robust measure of root architecture. Although endogenous indole-3-acetic acid (IAA) levels were similar in all genotypes, IAA and 1-N-naphthylphthalamic acid treatments showed different root growth responses to auxin because shallow and deep genotypes tended to have optimal and supraoptimal auxin levels, respectively, for root growth in controls. While IAA increased ethylene production, ethylene also increased IAA content. Although differences in acropetal IAA transport to roots of different zones can account for some of the differences in auxin responsiveness among roots of different emergence positions, this study shows that mutually dependent ethylene-auxin interplay regulates BRGA and root growth differently in different genotypes. Root length inhibition by auxin was reversed by an ethylene synthesis inhibitor. However, IAA caused smaller BRGA in deep genotypes, but not in shallow genotypes, which only responded to IAA in the presence of an ethylene inhibitor.  相似文献   
94.
We previously reported that the vasoactive peptide 1 (P1, "SSWRRKRKESS") modulates the tension of pulmonary artery vessels through caveolar endothelial nitric oxide synthase (eNOS) activation in intact lung endothelial cells (ECs). Since PKC-α is a caveolae resident protein and caveolae play a critical role in the peptide internalization process, we determined whether modulation of caveolae and/or caveolar PKC-α phosphorylation regulates internalization of P1 in lung ECs. Cell monolayers were incubated in culture medium containing Rhodamine red-labeled P1 (100 μM) for 0-120 min. Confocal examinations indicate that P1 internalization is time-dependent and reaches a plateau at 60 min. Caveolae disruption by methyl-β-cyclodextrin (CD) and filipin (FIL) inhibited the internalization of P1 in ECs suggesting that P1 internalizes via caveolae. P1-stimulation also enhances phosphorylation of caveolar PKC-α and increases intracellular calcium (Ca(2+)) release in intact cells suggesting that P1 internalization is regulated by PKC-α in ECs. To confirm the roles of increased phosphorylation of PKC-α and Ca(2+) release in internalization of P1, PKC-α modulation by phorbol ester (PMA), PKC-α knockdown, and Ca(2+) scavenger BAPTA-AM model systems were used. PMA-stimulated phosphorylation of caveolar PKC-α is associated with significant reduction in P1 internalization. In contrast, PKC-α deficiency and reduced phosphorylation of PKC-α enhanced P1 internalization. P1-mediated increased phosphorylation of PKC-α appears to be associated with increased intracellular calcium (Ca(2+)) release since the Ca(2+) scavenger BAPTA-AM enhanced P1 internalization. These data indicate that caveolar integrity and P1-mediated increased phosphorylation of caveolar PKC-α play crucial roles in the regulation of P1 internalization in lung ECs.  相似文献   
95.
A new tool for analysis of root growth in the spatio-temporal continuum   总被引:1,自引:0,他引:1  
Basu P  Pal A 《The New phytologist》2012,195(1):264-274
? Quantification of overall growth and local growth zones in root system development is key to understanding the biology of plant growth, and thus to exploring the effects of environmental, genotypic and mutational variations on plant development and productivity. ? We introduce a methodology for analyzing growth patterns of plant roots from two-dimensional time series images, treating them as a spatio-temporal three-dimensional (3D) image volume. The roots are segmented from the images and then two types of analysis are performed: 3D spatio-temporal reconstruction analysis for simultaneous assessment of initiation and growth of multiple roots; and spatio-temporal pixel intensity analysis along root midlines for quantification of the growth zones. ? The test measurements show simultaneous emergence of basal roots but sequential emergence of lateral roots in Phaseolus vulgaris, while lateral roots of Cicer arietinum emerge in a rhythmic pattern. Local growth analysis reveals multimodal transient growth zone in basal roots. At the initial stages after emergence, the roots oscillate rapidly, which slows down with time. ? The methodology presented here allows detailed characterization of the phenomenology of roots, providing valuable information of spatio-temporal development, with applications in a wide range of growing plant organs.  相似文献   
96.
Chemokine receptor CXCR7 is essential for normal development, and this receptor promotes initiation and progression of diseases including cancer and autoimmunity. To understand normal and pathologic functions of CXCR7 and advance development of therapeutic agents, there is a need to define structural domains that regulate this receptor. We generated mutants of CXCR7 with deletion of different lengths of the predicted intracellular tail and analyzed effects on CXCR7 signaling and function in cell-based assays. While wild-type CXCR7 predominantly localized to intracellular vesicles, progressive deletion of the carboxy terminus redistributed the receptor to the plasma membrane. Truncating the intracellular tail of CXCR7 did not alter binding to CXCL12, but mutant receptors had reduced scavenging of this chemokine. Using a firefly luciferase complementation system, we established that deletions of the carboxy terminus decreased basal interactions and eliminated ligand-dependent recruitment of the scaffolding protein β-arrestin-2 to receptors. Deleting the carboxy terminus of CXCR7 impaired constitutive internalization of the receptor and reduced activation of ERK1/2 by CXCL12-CXCR7. Inhibiting dynamin, a molecule required for internalization of CXCR7, increased ligand-dependent association of the receptor with β-arrestin-2 and enhanced activation of ERK1/2. These studies establish mechanisms of action for CXCR7 and establish the intracellular tail of CXCR7 as a critical determinant of receptor trafficking, chemokine scavenging, and signaling.  相似文献   
97.
ABSTRACT: BACKGROUND: Alzheimer's disease (AD) is the leading cause of dementia among the elderly. Disease modifying therapies targeting Abeta that are in development have been proposed to be more effective if treatment was initiated prior to significant accumulation of Abeta in the brain, but optimal timing of treatment initiation has not been clearly established in the clinic. We compared the efficacy of transient pharmacologic reduction of brain Abeta with a gamma-secretase inhibitor (GSI ) for 1--3 months (M) treatment windows in APP Tg2576 mice and subsequent aging of the mice to either 15M or 18M. RESULTS: These data show that reducing Abeta production in a 2-3M windows both initiated and discontinued before detectable Abeta deposition has the most significant impact on Abeta loads up to 11M after treatment discontinuation. In contrast, initiation of treatment for 3M windows from 7-10M or 12-15M shows progressively decreasing efficacy. CONCLUSIONS: These data have major implications for clinical testing of therapeutics aimed at lowering Abeta production, indicating that; i) these therapies may have little efficacy unless tested as prophylactics or in the earliest preclinical stage of AD where there is no or minimal Abeta accumulation and ii) lowering Abeta production transiently during a critical pre-deposition window potentially provides long-lasting efficacy after discontinuation of the treatment.  相似文献   
98.
Autoinhibition is being widely used in nature to repress otherwise constitutive protein activities and is typically regulated by extrinsic factors. Here we show that autoinhibition can be controlled by an intrinsic intramolecular switch afforded by prolyl cis-trans isomerization. We find that a proline on the linker tethering the two SH3 domains of the Crk adaptor protein interconverts between the cis and trans conformation. In the cis conformation, the two SH3 domains interact intramolecularly, thereby forming the basis of an autoinhibitory mechanism. Conversely, in the trans conformation Crk exists in an extended, uninhibited conformation that is marginally populated but serves to activate the protein upon ligand binding. Interconversion between the cis and trans, and, hence, of the autoinhibited and activated conformations, is accelerated by the action of peptidyl-prolyl isomerases. Proline isomerization appears to make an ideal switch that can regulate the kinetics of activation, thereby modulating the dynamics of signal response.  相似文献   
99.
Five species of mangroves (Bruguiera gymnorrhiza, Excoecaria agallocha, Heritiera fomes, Phoenix paludosa and Xylocarpus granatum) were investigated with respect to their photosynthesis rate, chlorophyll content, mesophyll conductance, specific leaf area, stomatal conductance and photosynthetic nitrogen use efficiency under saline (15–27 PPT) and non-saline (1.8–2 PPT) conditions. Some inorganic elements were estimated from the leaf samples to compare the concentrations with change in salinity. Elevated assimilation rate coupled with increased chlorophyll content, more mesophyll and stomatal conductance and higher specific leaf area in non-saline condition indicates that these mangroves can grow well even with minimal salinity in soil. In B. gymnorrhiza, E. agallocha and P. paludosa the optimum PAR acquisition for photosynthesis was higher under salt stress, while the maximal rate of assimilation was lower even with minimal salinity. H. fomes and X. granatum followed the opposite trend, where the peak photosynthesis rate was lower under non-saline conditions even at a higher irradiance than in the saline forest. This indicates less affinity of H. fomes and X. granatum to high substrate salinity. Accumulation of Na+ increased in plants in saline substrate, while in most of the species, salinity imposed reduction in Ca+ and Mg+ uptake. Increased K+ content can be attributed to high substrate level K+ in non-saline soil. Trace amount of salinity induced Cu++ detected in leaves of H. fomes may impart some toxic effects. Photosynthetic nitrogen use efficiency increased in non-saline soil that can be attributed to higher photosynthetic peak in most of the species and/or lower nitrogen accumulation in plant samples.  相似文献   
100.
Purified trehalose-6-phosphate synthase (TPS) of Saccharomyces cerevisiae was effective over a wide range of substrates, although differing with regard to their relative activity. Polyanions heparin and chondroitin sulfate were seen to stimulate TPS activity, particularly when a pyrimidine glucose nucleotide like UDPG was used, rather than a purine glucose nucleotide like GDPG. A high Vmax and a low Km value of UDPG show its greater affinity with TPS than GDPG or TDPG. Among the glucosyl acceptors TPS showed maximum activity with G-6-P which was followed by M-6-P and F-6-P. Effect of heparin was also extended to the purification of TPS activity, as it helped to retain both stability and activity of the final purified enzyme. Metal co-factors, specifically MnCl2 and ZnCl2 acted as stimulators, while enzyme inhibitors had very little effect on TPS activity. Metal chelators like CDTA, EGTA stimulated enzyme activity by chelation of metal inhibitors. Temperature and pH optima of the purified enzyme were determined to be 40 °C and pH 8.5 respectively. Enzyme activity was stable at 0–40 °C and at alkaline pH.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号