首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1242篇
  免费   59篇
  国内免费   2篇
  2023年   14篇
  2022年   10篇
  2021年   41篇
  2020年   27篇
  2019年   39篇
  2018年   30篇
  2017年   29篇
  2016年   45篇
  2015年   60篇
  2014年   80篇
  2013年   108篇
  2012年   132篇
  2011年   112篇
  2010年   63篇
  2009年   62篇
  2008年   71篇
  2007年   64篇
  2006年   58篇
  2005年   44篇
  2004年   35篇
  2003年   15篇
  2002年   26篇
  2001年   13篇
  2000年   16篇
  1999年   9篇
  1998年   9篇
  1997年   4篇
  1996年   4篇
  1995年   4篇
  1994年   2篇
  1993年   3篇
  1992年   4篇
  1991年   7篇
  1990年   7篇
  1989年   4篇
  1988年   4篇
  1987年   6篇
  1986年   5篇
  1985年   7篇
  1984年   2篇
  1983年   2篇
  1982年   3篇
  1981年   5篇
  1980年   4篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1973年   3篇
  1972年   1篇
排序方式: 共有1303条查询结果,搜索用时 31 毫秒
91.
Numerous studies have used the dual-tracer method to assess postprandial glucose metabolism. The present experiments were undertaken to determine whether the marked tracer nonsteady state that occurs with the dual-tracer approach after food ingestion introduces error when it is used to simultaneously measure both meal glucose appearance (R(a meal)) and endogenous glucose production (EGP). To do so, a novel triple-tracer approach was designed: 12 subjects ingested a mixed meal containing [1-(13)C]glucose while [6-(3)H]glucose and [6,6-(2)H(2)]glucose were infused intravenously in patterns that minimized the change in the plasma ratios of [6-(3)H]glucose to [1-(13)C]glucose and of [6,6-(2)H(2)]glucose to endogenous glucose, respectively. R(a meal) and EGP measured with this approach were essentially model independent, since non-steady-state error was minimized by the protocol. Initial splanchnic glucose extraction (ISE) was 12.9% +/- 3.4%, and suppression of EGP (EGPS) was 40.3% +/- 4.1%. In contrast, when calculated with the dual-tracer one-compartment model, ISE was higher (P < 0.05) and EGPS was lower (P < 0.005) than observed with the triple-tracer approach. These errors could only be prevented by using time-varying volumes different for R(a meal) and EGP. Analysis of the dual-tracer data with a two-compartment model reduced but did not totally avoid the problems associated with marked postprandial changes in the tracer-to-tracee ratios. We conclude that results from previous studies that have used the dual-tracer one-compartment model to measure postprandial carbohydrate metabolism need to be reevaluated and that the triple-tracer technique may provide a useful approach for doing so.  相似文献   
92.
Numerous investigators have developed monoclonal antibodies against B-cell alloantigen(s) of rheumatic fever. However, the developed monoclonals do not have the same significance in all the populations. We have developed a battery of monoclonals against B-cell alloantigens of North Indian rheumatic fever patients. In the present study, we have used these monoclonals to examine the frequency of rheumatic antigens in 30 patients with recurrence of rheumatic activity (RRA), 30 of rheumatic heart disease (RHD) patients and 50 controls using alkaline phosphatase anti-alkaline phosphatase (APAAP) technique. These patients were examined at the time of registry and after three months follow up. RRA patients showed higher percentage of lymphocyte positive as compare to RHD and controls. Interestingly, On follow-up RRA patients showed significant decline in positive lymphocyte as compare to first visit whereas no such change was observed in RHD patients. There were 90–93% of RRA and RHD patients positive with these monoclonals. A significant age variation of rheumatic cells was also noticed in all groups of rheumatic patients. We conclude that monoclonals raised from the same ethnic population are highly specific and cost effective to use them to develop an easy field test system such as APAAP, to identify the individual at risk, to develop rheumatic fever. It is also suggested that the alloantigen marker may persist through out life and gets activated after recurrence of the disease.  相似文献   
93.
Adult human mesenchymal stem cells are primary, multipotent cells capable of differentiating to osteocytic, chondrocytic, and adipocytic lineages when stimulated under appropriate conditions. To characterize the molecular mechanisms that regulate osteogenic differentiation, we examined the contribution of mitogen-activated protein kinase family members, ERK, JNK, and p38. Treatment of these stem cells with osteogenic supplements resulted in a sustained phase of ERK activation from day 7 to day 11 that coincided with differentiation, before decreasing to basal levels. Activation of JNK occurred much later (day 13 to day 17) in the osteogenic differentiation process. This JNK activation was associated with extracellular matrix synthesis and increased calcium deposition, the two hallmarks of bone formation. Inhibition of ERK activation by PD98059, a specific inhibitor of the ERK signaling pathway, blocked the osteogenic differentiation in a dose-dependent manner, as did transfection with a dominant negative form of MAP kinase kinase (MEK-1). Significantly, the blockage of osteogenic differentiation resulted in the adipogenic differentiation of the stem cells and the expression of adipose-specific mRNAs peroxisome proliferator-activated receptor gamma2, aP2, and lipoprotein lipase. These observations provide a potential mechanism involving MAP kinase activation in osteogenic differentiation of adult stem cells and suggest that commitment of hMSCs into osteogenic or adipogenic lineages is governed by activation or inhibition of ERK, respectively.  相似文献   
94.
The quinone oxidoreductases [NAD(P)H:quinone oxidoreductase1 (NQO1) and NRH:quinone oxidoreductase2 (NQO2)] are flavoproteins. NQO1 is known to catalyse metabolic detoxification of quinones and protect cells from redox cycling, oxidative stress and neoplasia. NQO2 is a 231 amino acid protein (25956 mw) that is 43 amino acids shorter than NQO1 at its carboxy-terminus. The human NQO2 cDNA and protein are 54 and 49% similar to the human liver cytosolic NQO1 cDNA and protein. Recent studies have revealed that NQO2 differs from NQO1 in its cofactor requirement. NQO2 uses dihydronicotinamide riboside (NRH) rather than NAD(P)H as an electron donor. Another difference between NQO1 and NQO2 is that NQO2 is resistant to typical inhibitors of NQO1, such as dicoumarol, Cibacron blue and phenindone. Flavones, including quercetin and benzo(a)pyrene, are known inhibitors of NQO2. Even though overlapping substrate specificities have been observed for NQO1 and NQO2, significant differences exist in relative affinities for the various substrates. Analysis of the crystal structure of NQO2 revealed that NQO2 contains a specific metal binding site, which is not present in NQO1. The human NQO2 gene has been precisely localized to chromosome 6p25. The human NQO2 gene locus is highly polymorphic. The NQO2 gene is ubiquitously expressed and induced in response to TCDD. Nucleotide sequence analysis of the NQO2 gene promoter revealed the presence of several cis-elements, including SP1 binding sites, CCAAT box, xenobiotic response element (XRE) and an antioxidant response element (ARE). The complement of these elements regulates tissue specific expression and induction of the NQO2 gene in response to xenobiotics and antioxidants. The in vivo role of NQO2 and its role in quinone detoxification remains unknown.  相似文献   
95.
Haloperidol (50 mg/kg, i.p.) treatment was given once to two different groups of pregnant Charles Foster rats on gestational day 9 and 14, these being respectively the critical periods of neural morphogenesis and rapid neural cell proliferation in this species. Pregnant control rats were similarly treated with equal volume of vehicle. The pups born were subjected to open-field exploratory behaviour and elevated plus-maze behaviour tests of anxiety and learned helplessness test of depression at 9 weeks of age. The results indicate that prenatal haloperidol treatment on gestational day 14 induces a significant increase in open-field ambulation and faecal droppings whereas haloperidol treatment on gestational day 9 caused significantly decreased rearing and unaltered ambulation in rat offsprings. Rat offsprings treated with haloperidol on gestational day 9 and 14 also displayed significant anxiogenic behaviour pattern on elevated plus-maze. Significantly increased number of escape failures were observed in learned helplessness tests indicating presence of depression in haloperidol treated rat offsprings. These behavioural alterations were found to be more marked in rat offsprings treated with haloperidol on gestational day 14. The results suggest that prenatal single exposure of high dose of haloperidol during critical period of neural cell proliferation leaves a lasting imprint on offsprings resulting in abnormal emotional state.  相似文献   
96.
97.
Hydroxyurea (HU) is an effective drug for the treatment of sickle cell disease (SCD). The main clinical benefit of HU is thought to derive from its capacity to increase fetal hemoglobin (HbF) production. However, other effects leading to clinical benefit, such as improved blood rheology, have been suggested. In order to understand HU-induced changes at the proteomic level, we profiled sickle RBC membranes from of HU-treated and untreated patients. Our previous in vitro profiling studies on sickle RBC membranes identified a significant increase in predominantly anti-oxidant enzymes, protein repair and degradation components and a few RBC cytoskeletal proteins. In the present study, using 2D-DIGE (Two-Dimensional Difference In-Gel Electrophoresis) and tandem mass spectrometry, we detected 32 different proteins that significantly changed in abundance in the HU treatment group. The proteins that significantly increased in abundance were mostly membrane skeletal components involved in the regulation of RBC shape and flexibility, and those showing a significant decrease were components of the protein repair and degradation machinery. RBC palmitoylated membrane protein 55 (p55) is significantly increased in abundance at low (in vitro) and high (in vivo) concentrations of HU. Palmitoylated p55 may be an important target of HU-dependent regulation of the sickle RBC membrane, consistent with our earlier in vitro studies.  相似文献   
98.
The development of small animal models that elicit human immune responses to dengue virus (DENV) is important since prior immunity is a major risk factor for developing severe dengue disease. This study evaluated anti-DENV human antibody (hAb) responses generated from immortalized B cells after DENV-2 infection in NOD-scid IL2rγnull mice that were co-transplanted with human fetal thymus and liver tissues (BLT-NSG mice). DENV-specific human antibodies predominantly of the IgM isotype were isolated during acute infection and in convalescence. We found that while a few hAbs recognized the envelope protein produced as a soluble recombinant, a number of hAbs only recognized epitopes on intact virions. The majority of the hAbs isolated during acute infection and in immune mice were serotype-cross-reactive and poorly neutralizing. Viral titers in immune BLT-NSG mice were significantly decreased after challenge with a clinical strain of dengue. DENV-specific hAbs generated in BLT-NSG mice share some of the characteristics of Abs isolated in humans with natural infection. Humanized BLT-NSG mice provide an attractive preclinical platform to assess the immunogenicity of candidate dengue vaccines.  相似文献   
99.
Mechanical activity of cells and the stress imposed on them by extracellular environment is a constant source of injury to the plasma membrane (PM). In invasive tumor cells, increased motility together with the harsh environment of the tumor stroma further increases the risk of PM injury. The impact of these stresses on tumor cell plasma membrane and mechanism by which tumor cells repair the PM damage are poorly understood. Ca2+ entry through the injured PM initiates repair of the PM. Depending on the cell type, different organelles and proteins respond to this Ca2+ entry and facilitate repair of the damaged plasma membrane. We recently identified that proteins expressed in various metastatic cancers including Ca2+-binding EF hand protein S100A11 and its binding partner annexin A2 are used by tumor cells for plasma membrane repair (PMR). Here we will discuss the involvement of S100, annexin proteins and their regulation of actin cytoskeleton, leading to PMR. Additionally, we will show that another S100 member – S100A4 accumulates at the injured PM. These findings reveal a new role for the S100 and annexin protein up regulation in metastatic cancers and identify these proteins and PMR as targets for treating metastatic cancers.  相似文献   
100.
Two insults often underlie a variety of eye diseases including glaucoma, optic atrophy, and retinal degeneration—defects in mitochondrial function and aberrant Rhodopsin trafficking. Although mitochondrial defects are often associated with oxidative stress, they have not been linked to Rhodopsin trafficking. In an unbiased forward genetic screen designed to isolate mutations that cause photoreceptor degeneration, we identified mutations in a nuclear-encoded mitochondrial gene, ppr, a homolog of human LRPPRC. We found that ppr is required for protection against light-induced degeneration. Its function is essential to maintain membrane depolarization of the photoreceptors upon repetitive light exposure, and an impaired phototransduction cascade in ppr mutants results in excessive Rhodopsin1 endocytosis. Moreover, loss of ppr results in a reduction in mitochondrial RNAs, reduced electron transport chain activity, and reduced ATP levels. Oxidative stress, however, is not induced. We propose that the reduced ATP level in ppr mutants underlies the phototransduction defect, leading to increased Rhodopsin1 endocytosis during light exposure, causing photoreceptor degeneration independent of oxidative stress. This hypothesis is bolstered by characterization of two other genes isolated in the screen, pyruvate dehydrogenase and citrate synthase. Their loss also causes a light-induced degeneration, excessive Rhodopsin1 endocytosis and reduced ATP without concurrent oxidative stress, unlike many other mutations in mitochondrial genes that are associated with elevated oxidative stress and light-independent photoreceptor demise.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号