首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   6篇
  2021年   2篇
  2019年   2篇
  2016年   2篇
  2015年   6篇
  2014年   3篇
  2013年   3篇
  2012年   8篇
  2011年   3篇
  2010年   2篇
  2009年   7篇
  2008年   3篇
  2007年   4篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  2003年   5篇
  2002年   6篇
  2001年   3篇
  2000年   2篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1960年   1篇
排序方式: 共有94条查询结果,搜索用时 265 毫秒
71.
Hepatitis C virus (HCV) and Epstein–Barr virus (EBV) have been repeatedly associated with risk of non-Hodgkin's lymphoma (NHL) in studies focusing on serological evidence of infection. We investigated NHL risk in association with detection of HCV-RNA or EBV-DNA in the peripheral blood mononuclear cells (PBMC). The study involved 91 NHL cases and 182 controls nested in the Italian branch of the EPIC (European Prospective Investigation of Cancer and nutrition) cohort, which obtained blood samples from 47,749 healthy volunteers between 1993 and 1998 in 5 Italian cities. NHL cases were identified until June 2005 through linkage with records of the Cancer, Mortality, and Hospital Discharge Registries. For all study subjects, we performed viral genome analyses on DNA and RNA extracted from buffy-coats and analysed EBV and HCV antibodies. The odds ratios (ORs) of NHL were 1.2 (95% confidence intervals: 0.4–3.8; 5 exposed cases) for PBMC HCV infection and 1.2 (0.7–2.3; 24 exposed cases) for PBMC EBV infection. Similar OR estimates were found for detection of EBV and HCV antibodies. These null results, although based on a relatively small sample size, suggest that persistent EBV and HCV infection in the PBMC is not a stronger predictor of NHL risk than serological evidence of infection.  相似文献   
72.
Insect seminal fluid proteins are powerful modulators of many aspects of female physiology and behaviour including longevity, egg production, sperm storage, and remating. The crucial role of these proteins in reproduction makes them promising targets for developing tools aimed at reducing the population sizes of vectors of disease. In the malaria mosquito Anopheles gambiae, seminal secretions produced by the male accessory glands (MAGs) are transferred to females in the form of a coagulated mass called the mating plug. The potential of seminal fluid proteins as tools for mosquito control demands that we improve our limited understanding of the composition and function of the plug. Here, we show that the plug is a key determinant of An. gambiae reproductive success. We uncover the composition of the plug and demonstrate it is formed through the cross-linking of seminal proteins mediated by a MAG-specific transglutaminase (TGase), a mechanism remarkably similar to mammalian semen coagulation. Interfering with TGase expression in males inhibits plug formation and transfer, and prevents females from storing sperm with obvious consequences for fertility. Moreover, we show that the MAG-specific TGase is restricted to the anopheline lineage, where it functions to promote sperm storage rather than as a mechanical barrier to re-insemination. Taken together, these data represent a major advance in our understanding of the factors shaping Anopheles reproductive biology.  相似文献   
73.

Background

The relationship between coffee consumption and coronary heart disease (CHD) has been investigated in several studies with discrepant results. We examined the association between Italian-style (espresso and mocha) coffee consumption and CHD risk.

Methods

We investigated 12,800 men and 30,449 women without history of cardiovascular disease recruited to the EPICOR prospective cohort study. Coffee consumption was assessed at baseline. In a random sub-cohort of 1472 subjects, plasma triglycerides, and total, LDL and HDL cholesterol were determined to investigate the effect of coffee consumption on plasma lipids.

Results

After a mean follow up of 10.9 years, 804 cases of CHD (500 acute events, 56 fatal events and 248 revascularizations, all first events) were identified. Multivariable adjusted hazard ratios for CHD were: 1.18 (95% CI 0.87–1.60) for drinking 1–2 cups/day, 1.37 (95% CI 1.03–1.82) for >2–4 cups/day and 1.52 (95% CI 1.11–2.07) for over 4 cups/day (P trend <0.001) compared to reference (<1 cup/day). Plasma triglycerides, and total, LDL and HDL cholesterol did not vary significantly (ANOVA) with coffee consumption.

Conclusion

Consumption of over 2 cups/day of Italian-style coffee is associated with increased CHD risk, but coffee consumption was not associated with plasma lipid changes, so the adverse effect of consumption appears unrelated to lipid profile.  相似文献   
74.
As HIV-1-encoded envelope protein traverses the secretory pathway, it may be modified with N- and O-linked carbohydrate. When the gp120s of HIV-1 NL4-3, HIV-1 YU2, HIV-1 Bal, HIV-1 JRFL, and HIV-1 JRCSF were expressed as secreted proteins, the threonine at consensus position 499 was found to be O-glycosylated. For SIVmac239, the corresponding threonine was also glycosylated when gp120 was recombinantly expressed. Similarly-positioned, highly-conserved threonines in the influenza A virus H1N1 HA1 and H5N1 HA1 envelope proteins were also found to carry O-glycans when expressed as secreted proteins. In all cases, the threonines were modified predominantly with disialylated core 1 glycans, together with related core 1 and core 2 structures. Secreted HIV-1 gp140 was modified to a lesser extent with mainly monosialylated core 1 O-glycans, suggesting that the ectodomain of the gp41 transmembrane component may limit the accessibility of Thr499 to glycosyltransferases. In striking contrast to these findings, gp120 on purified virions of HIV-1 Bal and SIV CP-MAC lacked any detectable O-glycosylation of the C-terminal threonine. Our results indicate the absence of O-linked carbohydrates on Thr499 as it exists on the surface of virions and suggest caution in the interpretation of analyses of post-translational modifications that utilize recombinant forms of envelope protein.  相似文献   
75.
2-Benzo[d]thiazolyl- and 2-benzo[d]isothiazolyl-imino-5-benzylidene-4-thiazolidinone derivatives were investigated as potential metalloproteinases (MMPs) inhibitors and evaluated for their antidegenerative activity on human chondrocyte cultures stimulated by IL-1β, using an experimental model that reproduces the mechanisms involved in osteoarthritic (OA) diseases. Cell viability, the amount of glycosaminoglycans (GAGs) and the production of nitric oxide (NO) were measured. The most potent compound, 5-(4-methoxy-benzylidene)-2-(benzo[d]isothiazol-3-ylimino)-thiazolidin-4-one (4b), a MMP-13 inhibitor at nanomolar concentration (IC50 = 0.036 μM), could be considered as a lead compound for the development of novel clinical agents, inhibitors of cartilage degradation, for the treatment of OA.  相似文献   
76.
α-Dystroglycan (DG) is a key component of the dystrophin-glycoprotein complex. Aberrant glycosylation of the protein has been linked to various forms of congenital muscular dystrophy. Unusually α-DG has previously been demonstrated to be modified with both O-N-acetylgalactosamine and O-mannose initiated glycans. In the present study, Fc-tagged recombinant mouse α-DG was expressed and purified from human embryonic kidney 293T cells. α-DG glycopeptides were characterized by glycoproteomic strategies using both nano-liquid chromatography matrix-assisted laser desorption ionization and electrospray tandem mass spectrometry. A total of 14 different peptide sequences and 38 glycopeptides were identified which displayed heterogeneous O-glycosylation. These data provide new insights into the complex domain-specific O-glycosylation of α-DG.  相似文献   
77.
We describe Peptoonist, a program that can automatically identify the glycans (sugars) present at each N-glycosylation site of a protein. The input to Peptoonist is a series of mass spectra, both MS and MS/MS, obtained from a liquid chromatography (LC) run of proteolytically digested purified glycoproteins. The program uses MS/MS to identify glycosylated peptides and single-MS to identify the N-glycans present on each of these peptides, at least to the level of monosaccharide composition. We validate the program on an LC run of mouse zona pellucida proteins that had been intensively hand annotated by a human expert. Our program doubled the number of glycopeptide identifications, and also found several possible errors in the hand annotation. In addition, it automatically made most of the same glycan isomer identifications as the expert annotator.  相似文献   
78.
Glycodelin is a human glycoprotein with four reported glycoforms, namely glycodelin-A (GdA), glycodelin-F (GdF), glycodelin-C (GdC), and glycodelin-S (GdS). These glycoforms have the same protein core and appear to differ in their N-glycosylation. The glycosylation of GdA is completely different from that of GdS. GdA inhibits proliferation and induces cell death of T cells. However, the glycosylation and immunomodulating activities of GdF and GdC are not known. This study aimed to use ultra-high sensitivity mass spectrometry to compare the glycomes of GdA, GdC, and GdF and to study the relationship between the immunological activity and glycosylation pattern among glycodelin glycoforms. Using MALDI-TOF strategies, the glycoforms were shown to contain an enormous diversity of bi-, tri-, and tetra-antennary complex-type glycans carrying Galβ1–4GlcNAc (lacNAc) and/or GalNAcβ1–4GlcNAc (lacdiNAc) antennae backbones with varying levels of fucose and sialic acid substitution. Interestingly, they all carried a family of Sda (NeuAcα2–3(GalNAcβ1–4)Gal)-containing glycans, which were not identified in the earlier study because of less sensitive methodologies used. Among the three glycodelins, GdA is the most heavily sialylated. Virtually all the sialic acid on GdC is located on the Sda antennae. With the exception of the Sda epitope, the GdC N-glycome appears to be the asialylated counterpart of the GdA/GdF glycomes. Sialidase activity, which may be responsible for transforming GdA/GdF to GdC, was detected in cumulus cells. Both GdA and GdF inhibited the proliferation, induced cell death, and suppressed interleukin-2 secretion of Jurkat cells and peripheral blood mononuclear cells. In contrast, no immunosuppressive effect was observed for GdS and GdC.Glycodelin is a member of the lipocalin family. It consists of 180 amino acid residues (1) with two sites of N-linked glycosylation. There are four reported glycodelin isoforms, namely glycodelin-A (amniotic fluid isoform, GdA),4 glycodelin-F (follicular fluid, GdF), glycodelin-C (cumulus matrix, GdC) and glycodelin-S (seminal plasma, GdS) (25). Among the four glycodelin isoforms, only the N-glycan structures of GdA and GdS have been previously determined. This was achieved using fast atom bombardment mass spectrometry (6, 7). The glycan structures of GdA and GdS are completely different. In GdA, the Asn-28 site carries high mannose, hybrid, and complex-type structures, whereas the second Asn-63 site is exclusively occupied by complex-type glycans (6). The major non-reducing epitopes characterized in the complex-type glycans are Galβ1–4GlcNAc (lacNAc), GalNAcβ1–4GlcNAc (lacdiNAc), NeuAcα2–6Galβ1–4GlcNAc (sialylated lacNAc), NeuAcα2–6GalNAcβ1–4GlcNAc (sialylated lacdiNAc), Galβ1–4(Fucα1–3)GlcNAc (Lewis-x), and GalNAcβ1–4(Fucα1–3)GlcNAc (lacdiNAc analog of the blood group substance Lewis-x) (6). Many of these oligosaccharides are rare in other human glycoproteins. GdS glycans are unusually fucose-rich, and the major complex type glycan structures are bi-antennary glycans with Lewis-x and Lewis-y antennae. Glycosylation of GdS is highly site-specific. Asn-28 contains only high mannose structures, whereas Asn-63 contains only complex type glycans. More than 80% of the complex glycans have 3–5 fucose residues/glycan, and none of the glycans is sialylated, which is unusual for a secreted human glycoprotein (7). The glycan structures of GdF and GdC are not known, although they differ in lectin-binding properties and isoelectric point from the other two glycodelin isoforms (5).Glycans are involved in various intracellular, intercellular, and cell-matrix recognition events (8, 9). Glycosylation determines the biological activities of the glycodelin isoforms (2, 10). For example, both GdA and GdF inhibit the spermatozoa-zona pellucida binding (11) via fucosyltransferase-5 (12), but only the latter inhibits progesterone-induced acrosome reaction, thus preventing a premature acrosome reaction of the spermatozoa. There is evidence that cumulus cells can convert exogenous GdA and -F to GdC, the physicochemical properties of which suggest that it is differently glycosylated compared with GdA/F (5). Moreover, GdC stimulated spermatozoa-zona pellucida binding in a dose-dependent manner, and it effectively displaced sperm-bound GdA and -F (4, 5). GdS suppresses capacitation probably via its inhibitory activity on cholesterol efflux from spermatozoa (13).Except for the effects on fertilization, GdA is involved in fetomaternal defense. This glycodelin isoform suppresses proliferation and induces apoptosis of T cells (2) and inhibits natural killer cell (14) and B-cell (15) activities. Glycosylation is involved in the binding of GdA to receptors on T cells (16). The sialic acid of GdA contributes to the apoptotic activity in T cells (17, 18) and binding to CD45, a potential GdA receptor (16). The importance of glycosylation in glycodelin is further shown by the absence of immunosuppressive activities in GdS with different glycosylation (18). The immunomodulating activities of GdF and GdC are unknown.Our previous work showed that glycans are indispensable for the different glycodelins to exhibit their binding activities and biological effects (13, 19, 20). The present study aims to identify the effect of all four glycodelin isoforms on lymphocyte viability, cell death, and interleukin-2 (IL-2) secretion and to correlate these bioactivities with their glycosylation patterns determined by mass spectrometry.  相似文献   
79.
Ultra-high-sensitivity, biopolymer sequencing is a goal in many fields of molecular biology, and collisionally activated decomposition electrospray mass spectrometry (CAD ES MS/MS) using a triple quadrupole mass spectrometer has become a method of choice for work in the high- to mid-femtomole range. However, when the detection of ions becomes statistical, as it may in that range, the mass assignment of fragment ions is inaccurate and either sequencing becomes impossible or ambiguities result due, for example, to the closeness in amino acid residue masses (I/L, N or K/Q, E). Some ambiguities may be resolved by synthesizing possible sequences, but this is unsatisfactory. In considering the limitations of triple quadrupole MS/MS with respect to scanning ion detection, resolution, transmission, and mass accuracy, we reasoned that a novel geometry quadrupole orthogonal acceleration time-of-flight (Q-TOF) instrument would have special merit for ultra-high-sensitivity MS/MS sequencing, and suggested its construction for this purpose some three years ago. A prototype Q-TOF has now been built by Micromass [Morris et al. (1996), Rapid Commun. Mass Spectrom. 10, 889–896], and in the first research on the instrument, including MHC antigen and filarial nematode glycoprotein studies, we demonstrate low-femtomole- and attomole-range sequencing with mass accuracy of better than 0.1 Da throughout the daughter-ion spectrum, thus removing sequencing ambiguities in some of the most challenging work demanding the highest sensitivity.  相似文献   
80.
The time-course for adjustments in the rate of extension of wheat (Triticum aestivum L. cv. Alexandria) roots, and the activity and capacity of respiratory pathways in the root apex, were determined after pruning the shoot to the ligule of the first leaf. Leaf pruning reduced the extension rate of both seminal and lateral roots. The onset of the response occurred within 1 h of pruning for laterals and between 2 and 3 h for seminals. The reduction in rate appears to be the result of a decrease in carbohydrate availability because (1) in seminal roots it was preceded by a decrease in soluble sugar content of the apical part of the growth zone (0–5 mm behind the root apex) and (2) supplying glucose (50 mM) to the roots of plants defoliated 24 h earlier led to a steady increase in extension rate of both seminal and lateral roots compared to non-fed controls. Supplying 3-O-methyl glucose had no effect. The reduction in extension rate of seminal roots was accompanied (or slightly preceded) by a reduction in respiratory O2 uptake in the apical part of the growth zone (0–5 mm). Changes in respiratory activity in the basal part of the growth zone (5–10 mm) only occurred several hours later. At the time root extension rate was reduced, the rate of O2 uptake could be stimulated with FCCP, which indicates that respiration was under the fine control of adenylates. From these results we suggest the following sequence of events occurs after defoliation. Firstly, defoliation reduces the supply of sugars to the root apex, this leads to a reduction in rate of extension through some form of coarse control by carbohydrates on cell division and expansion, which in turn reduces the rate of respiratory O2 uptake because of a smaller demand for ATP. The results also indicate that there is a rapid (<1.5 h) reduction in respiratory capacity in the root apex after defoliation which occurs before any change in the overall rate of respiration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号