首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   608篇
  免费   33篇
  2023年   7篇
  2022年   7篇
  2021年   19篇
  2020年   15篇
  2019年   15篇
  2018年   27篇
  2017年   14篇
  2016年   21篇
  2015年   19篇
  2014年   40篇
  2013年   37篇
  2012年   31篇
  2011年   37篇
  2010年   18篇
  2009年   18篇
  2008年   24篇
  2007年   25篇
  2006年   27篇
  2005年   21篇
  2004年   25篇
  2003年   13篇
  2002年   17篇
  2001年   11篇
  2000年   27篇
  1999年   20篇
  1998年   12篇
  1997年   9篇
  1996年   8篇
  1995年   5篇
  1994年   7篇
  1993年   3篇
  1992年   14篇
  1991年   3篇
  1990年   3篇
  1989年   6篇
  1988年   5篇
  1987年   4篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1979年   3篇
  1977年   1篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
  1970年   1篇
  1966年   3篇
  1962年   2篇
  1961年   1篇
排序方式: 共有641条查询结果,搜索用时 15 毫秒
551.
Patra J  Sahoo MK  Panda BB 《Mutation research》2005,581(1-2):173-180
Salicylic acid (SA), 0.01 mM, a signalling phytohormone, was tested for induction of adaptive response against genotoxicity of methyl mercuric chloride (MMCl), 0.013 mM; ethylmethane sulfonate (EMS), 2.5 mM, or maleic hydrazide (MH), 5 mM, in root meristem cells of Allium cepa. Induction of adaptive response to EMS by hydrogen peroxide (H2O2), 1 mM, and yet another secondary signal molecule was tested for comparison. Assessed by the incidence of mitoses with spindle and/or chromosome aberration and micronucleus, the findings provided evidence that SA-conditioning triggered adaptive response against the genotoxic-challenges of MMCl and EMS, but failed to do so against MH. H2O2, which is known to induce adaptive response to MMCl and MH, failed to induce the same against EMS in the present study. The findings pointed to the possible role of signal transduction in the SA-induced adaptive response to genotoxic stress that perhaps ruled out an involvement of H2O2.  相似文献   
552.
Mutation of all nonessential cysteine residues in rhodanese turns the enzyme into a form (C3S) that is fully active but less stable than wild type (WT). This less stable mutant allowed testing of two hypotheses; (a) the two domains of rhodanese are differentially stable, and (b) the chaperonin GroEL can bind better to less stable proteins. Reduced temperatures during expression and purification were required to limit inclusion bodies and obtain usable quantities of soluble C3S. C3S and WT have the same secondary structures by circular dichroism. C3S, in the absence of the substrate thiosulfate, is cleaved by trypsin to give a stable 21-kDa species. With thiosulfate, C3S is resistant to proteolysis. In contrast, wild type rhodanese is not proteolyzed significantly under any of the experimental conditions used here. Mass spectrometric analysis of bands from SDS gels of digested C3S indicated that the C-terminal domain of C3S was preferentially digested. Active C3S can exist in a state(s) recognized by GroEL, and it displays additional accessibility of tryptophans to acrylamide quenching. Unlike WT, the sulfur-loaded mutant form (C3S-ES) shows slow inactivation in the presence of GroEL. Both WT and C3S lacking transferred sulfur (WT-E and C3S-E) become inactivated. Inactivation is not due to irreversible covalent modification, since GroEL can reactivate both C3S-E and WT-E in the presence of GroES and ATP. C3S-E can be reactivated to 100%, the highest reactivation observed for any form of rhodanese. These results suggest that inactivation of C3S-E or WT-E is due to formation of an altered, labile conformation accessible from the native state. This conformation cannot as easily be achieved in the presence of the substrate, thiosulfate.  相似文献   
553.
Panda M  Horowitz PM 《Biochemistry》2002,41(6):1869-1876
We investigated the dissociation of tetradecameric GroEL by high hydrostatic pressure in the range of 1-2.5 kbar. Kinetics of the dissociation of GroEL in the absence and presence of Mg(2+) and/or KCl were monitored using light scattering. All of the kinetics were biphasic in nature. At any given pressure, only monomers and 14mers were produced, and below 2.5 kbar, the 14mers only partially dissociated to monomers, which did not significantly reassemble on depressurization. Under identical reaction conditions, the observed dissociation rates decreased by only 2-fold when the concentration of GroEL was increased by 20-fold. At 2.5 kbar the observed rates decreased exponentially with the increase in [KCl] and reached a minimum at approximately 75mM. Similarly, the rates decreased with the increase in [Mg(2+)] and reached a minimum at approximately 3 mM Mg(2+). In the presence of saturating amounts of Mg(2+) (10 mM) and KCl (100 mM), the rates were much faster than with 10 mM Mg(2+) alone. The results could be rationalized in terms of the presence of GroEL heterogeneity, which could not be assessed easily by common techniques such as sedimentation velocity, HPLC, gel electrophoresis, and dissociation by chaotropes. This heterogeneity is evidence of subpopulations of GroEL that dissociate at different pressures. At low pressures, the oligomer without added Mg(2+) only partially dissociates to monomers, leading to an apparent plateau in the kinetics, whereas in the presence of Mg(2+) the species are converted to a tighter Mg(2+)-bound species, leading to a much slower dissociation process. The presence of KCl in the sample also leads to similar heterogeneity.  相似文献   
554.
Three novel polyoxypregnane glycosides, volubiloside A, B and C (1-3), were isolated from the flowers of Dregea volubilis Linn., and their structures were elucidated as drevogenin D-3-O-beta-D-glucopyranosyl (1-->4)-6-deoxy-3-O-methyl-beta-D-allopyranosyl (1-->4)-beta-D-cymaropyranosyl (1-->4)-beta-D-cymaropyranoside, drevogenin D-3-O-beta-D-glucopyranosyl (1-->4)-6-deoxy-3-O-methyl-beta-D-allopyranosyl (1-->4)-beta-D-cymaropyranosyl (1-->4)-beta-D-digitoxopyranoside and drevogenin P-3-O-beta-D-glucopyranosyl (1-->4)-6-deoxy-3-O-methyl-beta-D-allopyranosyl (1-->4)-beta-D-cymaropyranosyl (1-->4)-beta-D-cymaropyranoside, respectively, on the basis of extensive NMR experiments, MALDI-TOF MS, and some chemical strategies.  相似文献   
555.
556.
To facilitate oviposition, the ectoparasite Bracon hebetor, injects its venom, a paralysing toxin, to the host Corcyra larva that ultimately dies without showing any metamorphic change, even if allowed to remain unparasitised. At the initial stage of venom injection the rate of heartbeat of the host becomes abruptly high. This has been explained from the synergistic action of the substances of poison gland and calyx. The paralysed larvae subsequent to envenomization die within 240 hr. Application of hydroprene as single dose or with a booster dose after paralysation mostly increases the survival period considering heart beat as the index. The predicted value of survival period (714.4 hr), determined from a fitted equation obtained from the relationship between heart beat and survival period, indicates that a 100 microg treatment/larva with a booster dose of 50 microg/larva most effectively lengthens the period. It is concluded that the venom-induced physiological dysfunction of the immobilised larvae, as indicated in the rate of heart beat and survival period, though can be recovered to some extent after the application of juvenoids, there cannot occur any metamorphic change of these larvae. The parasitoid, therefore, succeeds in completing its development and metamorphosis by arresting the development of its host through an indirect hormonal suppression. The findings indicate an endocrine implication in host-parasite relationship in insect.  相似文献   
557.
Using headspace gas chromatography-mass spectrometry, we detected significant amounts of nitrous oxide in the reaction products of the monooxygenase reaction catalyzed by neuronal nitric oxide synthase. Nitrous oxide is a dimerization product of nitroxyl anion; its presence in the reaction products indicates that the nitroxyl anion is a product of the neuronal nitric oxide synthase-catalyzed reaction.  相似文献   
558.
C-reactive protein (CRP) and surfactant protein A (SP-A) are phosphatidylcholine (PC) binding proteins that function in the innate host defense system. We examined the effects of CRP and SP-A on the surface activity of bovine lipid extract surfactant (BLES), a clinically applied modified natural surfactant. CRP inhibited BLES adsorption to form a surface-active film and the film's ability to lower surface tension (gamma) to low values near 0 mN/m during surface area reduction. The inhibitory effects of CRP were reversed by phosphorylcholine, a water-soluble CRP ligand. SP-A enhanced BLES adsorption and its ability to lower gamma to low values. Small amounts of SP-A blocked the inhibitory effects of CRP. Electron microscopy showed CRP has little effect on the lipid structure of BLES. SP-A altered BLES multilamellar vesicular structure by generating large, loose bilayer structures that were separated by a fuzzy amorphous material, likely SP-A. These studies indicate that although SP-A and CRP both bind PC, there is a difference in the manner in which they interact with surface films.  相似文献   
559.
Non-toxic, conditioning doses of aluminium chloride were tested for induction of adaptive response to the genotoxic challenge doses of methyl mercuric chloride (MMCl), maleic hydrazide (MH) and ethyl methane sulfonate (EMS). Embryonic shoot cells of Hordeum vulgare and root meristem cells of Allium cepa were employed as the assay systems. Plant tissues fixed at different recovery hours following the challenge treatments with or without prior Al-conditioning were analyzed for cells with genotoxicity markers that include spindle and/or chromosome aberrations and micronuclei (MNC). The results provided evidence that Al(3+) triggered adaptive response that protected the plant cells from the genotoxicity of MMCl and EMS. Al(3+), however, failed to induce adaptive response against the genotoxicity of MH. A comparison of Al-induced adaptive response with that induced by heavy metals: Cd(2+), Cu(2+), Hg(2+), Ni(2+), Pb(2+), Zn(2+) and oxidative agents: hydrogen peroxide (H(2)O(2)) and paraquat (PQ) pointed to the similarity of Al-adaptive response to that of PQ rather than to other heavy metals or H(2)O(2). Al-induced adaptive response demonstrated in the present study to MMCl and EMS possibly involved antioxidant defense and DNA repair systems, respectively.  相似文献   
560.
Aqueous two-phase: the system of choice for extractive fermentation   总被引:6,自引:1,他引:5  
Extractive fermentation in aqueous two-phase systems is a meaningful approach to overcome low product yield in a conventional fermentation process, and by proper design of the two-phase system it is possible to obtain the product in a cell-free stream. The characteristics of an aqueous two-phase system, various polymers used for forming an aqueous two-phase system, the physicochemical parameters of the aqueous two-phase system, partitioning of biomolecules and cell mass and the effect of individual phase forming polymers on cell growth and product formation are reviewed in this article. The various extractive fermentation processes are also summarised here. At the end, the economic viability and scope of aqueous two-phase fermentation are briefly discussed in relation to the wider application of this topic. Received: 16 June 1999 / Received revision: 29 December 1999 / Accepted: 4 January 2000  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号