首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   660篇
  免费   36篇
  国内免费   1篇
  2023年   3篇
  2021年   7篇
  2020年   4篇
  2019年   7篇
  2018年   9篇
  2017年   3篇
  2016年   8篇
  2015年   15篇
  2014年   20篇
  2013年   30篇
  2012年   34篇
  2011年   46篇
  2010年   32篇
  2009年   31篇
  2008年   30篇
  2007年   34篇
  2006年   44篇
  2005年   36篇
  2004年   41篇
  2003年   28篇
  2002年   15篇
  2001年   26篇
  2000年   22篇
  1999年   17篇
  1998年   5篇
  1997年   7篇
  1995年   4篇
  1993年   6篇
  1992年   9篇
  1991年   3篇
  1990年   8篇
  1989年   9篇
  1988年   7篇
  1987年   7篇
  1986年   10篇
  1985年   6篇
  1984年   6篇
  1983年   3篇
  1982年   3篇
  1980年   4篇
  1979年   5篇
  1978年   6篇
  1974年   4篇
  1973年   3篇
  1972年   6篇
  1971年   5篇
  1970年   6篇
  1969年   3篇
  1968年   4篇
  1965年   2篇
排序方式: 共有697条查询结果,搜索用时 15 毫秒
91.
Paik H  Kim J  Lee S  Heo HS  Hur CG  Lee D 《Molecules and cells》2012,33(4):351-361
The identification of true causal loci to unravel the statistical evidence of genotype-phenotype correlations and the biological relevance of selected single-nucleotide polymorphisms (SNPs) is a challenging issue in genome-wide association studies (GWAS). Here, we introduced a novel method for the prioritization of SNPs based on p-values from GWAS. The method uses functional evidence from populations, including phenotype-associated gene expressions. Based on the concept of genetic interactions, such as perturbation of gene expression by genetic variation, phenotype and gene expression related SNPs were prioritized by adjusting the p-values of SNPs. We applied our method to GWAS data related to drug-induced cytotoxicity. Then, we prioritized loci that potentially play a role in druginduced cytotoxicity. By generating an interaction model, our approach allowed us not only to identify causal loci, but also to find intermediate nodes that regulate the flow of information among causal loci, perturbed gene expression, and resulting phenotypic variation.  相似文献   
92.
N-terminal site-specific modification of a protein has many advantages over methods targeting internal positions, but it is not easy to install reactive groups onto a protein in an N-terminal specific manner. We here report a strategy to incorporate amino acid analogues specifically in the N-terminus of a protein in vivo and demonstrate it by preparing green fluorescent protein (GFP) having bio-orthogonally reactive groups at its N-terminus. In the first step, GFP was engineered to be a foldable, internal methionine-free sequence via the semi-rational mutagenesis of five internal methionine residues and the introduction of mutations for GFP folding enhancement. In the second step, the N-terminus of the engineered protein was modified in vivo with bio-orthogonally functional groups by reassigning functional methionine surrogates such as L-homopropargylglycine and L-azidohomoalanine into the first methionine codon of the engineered internal methionine-free GFP. The N-terminal specific incorporation of unnatural amino acids was confirmed by ESI-MS analysis and the incorporation did not affect significantly the specific activity, refolding rate and folding robustness of the protein. The two proteins which have alkyne or azide groups at their N-termini were conjugated each other by bio-orthogonal Cu(I)-catalyzed click chemistry. The strategy used in this study is expected to facilitate bio-conjugation applications of proteins such as N-terminal specific glycosylation, labeling of fluorescent dyes, and immobilization on solid surfaces.  相似文献   
93.
94.

Background

Due partly to physicians’ unawareness, many adults with Pompe disease are diagnosed with great delay. Besides, it is not well known which factors influence the rate of disease progression, and thus disease outcome. We delineated the specific clinical features of Pompe disease in adults, and mapped out the distribution and severity of muscle weakness, and the sequence of involvement of the individual muscle groups. Furthermore, we defined the natural disease course and identified prognostic factors for disease progression.

Methods

We conducted a single-center, prospective, observational study. Muscle strength (manual muscle testing, and hand-held dynamometry), muscle function (quick motor function test), and pulmonary function (forced vital capacity in sitting and supine positions) were assessed every 3–6 months and analyzed using repeated-measures ANOVA.

Results

Between October 2004 and August 2009, 94 patients aged between 25 and 75 years were included in the study. Although skeletal muscle weakness was typically distributed in a limb-girdle pattern, many patients had unfamiliar features such as ptosis (23%), bulbar weakness (28%), and scapular winging (33%). During follow-up (average 1.6 years, range 0.5-4.2 years), skeletal muscle strength deteriorated significantly (mean declines of ?1.3% point/year for manual muscle testing and of ?2.6% points/year for hand-held dynamometry; both p<0.001). Longer disease duration (>15 years) and pulmonary involvement (forced vital capacity in sitting position <80%) at study entry predicted faster decline. On average, forced vital capacity in supine position deteriorated by 1.3% points per year (p=0.02). Decline in pulmonary function was consistent across subgroups. Ten percent of patients declined unexpectedly fast.

Conclusions

Recognizing patterns of common and less familiar characteristics in adults with Pompe disease facilitates timely diagnosis. Longer disease duration and reduced pulmonary function stand out as predictors of rapid disease progression, and aid in deciding whether to initiate enzyme replacement therapy, or when.
  相似文献   
95.
Geldanamycin and its analogs are important anticancer agents that inhibit the newly targeted, heat-shock protein (Hsp) 90, which is a chaperone protein in eukaryotic cells. To resolve which geldanamycin biosynthetic genes are responsible for particular post-polyketide synthase (PKS) processing steps and in which order the reactions occur, we individually inactivated candidate genes in Streptomyces hygroscopicus subsp. duamyceticus JCM4427, and isolated and elucidated the structures of intermediates from each mutant. The results indicated that gel7 governs at least one of the benzoquinone ring oxidation steps. In addition, gel16 was found to be involved in double-bond formation between C-4 and C-5 of 4,5-dihydrogeldanamycin, which confirmed our previous findings that this double bond reduced during the post-PKS modification of the polyketide assembly. In addition, pro-geldanamycin, which does not possess a double bond at C-4/5, was purified from the gel7 and 8 double-gene-inactivated mutant.  相似文献   
96.
Lee HJ  Kang MJ  Lee EY  Cho SY  Kim H  Paik YK 《Proteomics》2008,8(16):3371-3381
A peptide-based 2-D liquid phase fractionation (PF2D) system was used in a quantitative proteomic analysis of hepatocellular carcinoma. 2-D liquid maps of peptide specimens showed better resolution than those of proteins, leading to the identification of differentially expressed proteins. Peptide-based PF2D gave well-matched theoretical and experimental pI values and was proven to be a very efficient and versatile analytical tool for both large-scale profiling and quantification of phosphoproteins in disease biomarker discovery.  相似文献   
97.
Paik MJ  Cho IS  Mook-Jung I  Lee G  Kim KR 《BMB reports》2008,41(1):23-28
The altered amino acid (AA) levels as neurotransmitter closely correlate to neurodegenerative conditions including Alzheimer's disease (AD). Target profiling analysis of nineteen AAs in brain cortex samples from three Tg2576 mice as AD model and three littermate mice as control model was achieved as their N(O,S)-ethoxycarbonyl/tert-butyldimethylsilyl derivatives by gas chromatography. Subsequently, star pattern recognition analysis was performed on the brain AA levels of AD mice after normalization to the corresponding control median values. As compared to control mice, gamma-aminobutyric acid among ten AAs found in brain samples was significantly reduced (P 0.01) while leucine was significantly elevated (P 0.02) in AD mice. The normalized AA levels of the three AD mice were transformed into distorted star patterns which was different from the decagonal shape of control median. The present method allowed visual discrimination of the three AD mice from the controls based on the ten normalized AA levels.  相似文献   
98.
Amyloid fibrils found in various neurodegenerative disorders are also recognized as high-performance protein nanomaterials with a formidable rigidity. Elucidation of an underlying molecular mechanism of the amyloid fibril formation is crucial not only to develop controlling strategy toward the diseases, but also to apply the protein fibrils for future nanobiotechnology. alpha-Synuclein is an amyloidogenic protein responsible for the radiating filament formation within Lewy bodies of Parkinson's disease. The amyloid fibril formation of alpha-synuclein has been shown to be induced from the oligomeric granular species of the protein acting as a growing unit by experiencing structural rearrangement within the preformed oligomeric structures in the presence of an organic solvent of hexane. This granule-based concerted amyloid fibril formation model would parallel the prevalent notion of nucleation-dependent fibrillation mechanism in the area of amyloidosis.  相似文献   
99.
Intracellular toxic effects of the dequalinium-induced protofibrils of alpha-synuclein have been investigated with the yeast system expressing alpha-synuclein-GFP fusion protein in single copy, which appears in the green halo around the plasma membrane. Intracellular responses of the green fluorescent protein were analyzed as the cells were treated with dequalinium (DQ) and lactacystin. Yeast cells expressing alpha-synuclein-GFP were susceptible to both compounds in alpha-synuclein-dependent manner. Upon DQ treatment, the green halo became smeared throughout the cytoplasm while lactacystin induced a few discrete green dots, reflecting intracellular formation of the protofibrils and the protein inclusions, respectively. The DQ-treated yeast cells were intensely stained with the nucleic acid stains of cell-permeable Hoechst 33342 and cell-impermeable propidium imidione, indicating that nucleus has been disrupted in addition to plasma membrane destabilization. Those DQ-treated yeast cells, however, still contained active mitochondria identified with MitoTracker Red. Therefore, the DQ-induced protofibrillar state of alpha-synuclein-GFP has been suggested to cause the nuclear damage either independently or in combination with the membrane destabilization without affecting mitochondria.  相似文献   
100.
This review focuses on the mechanisms of stress response in the synovial tissue of rheumatoid arthritis. The major stress factors, such as heat stress, shear stress, proinflammatory cytokines and oxidative stress, are discussed and reviewed, focusing on their potential to induce a stress response in the synovial tissue. Several pathways of stress signalling molecules are found to be activated in the synovial membrane of rheumatoid arthritis; of these the most important examples are heat shock proteins, mitogen-activated protein kinases, stress-activated protein kinases and molecules involved in the oxidative stress pathways. The expression of these pathways in vitro and in vivo as well as the consequences of stress signalling in the rheumatoid synovium are discussed. Stress signalling is part of a cellular response to potentially harmful stimuli and thus is essentially involved in the process of synovitis. Stress signalling pathways are therefore new and promising targets of future anti-rheumatic therapies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号