首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   26篇
  2018年   1篇
  2016年   3篇
  2015年   1篇
  2014年   5篇
  2013年   4篇
  2012年   5篇
  2011年   2篇
  2010年   3篇
  2009年   1篇
  2008年   2篇
  2006年   5篇
  2005年   5篇
  2004年   3篇
  2003年   5篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   4篇
  1997年   1篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1992年   2篇
  1991年   7篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   4篇
  1983年   2篇
  1982年   3篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1974年   3篇
  1973年   1篇
  1972年   3篇
  1971年   1篇
  1968年   1篇
  1967年   1篇
  1965年   1篇
排序方式: 共有122条查询结果,搜索用时 125 毫秒
61.
The association of Cryptosporidium parvum oocysts with suspended particles can alter the oocysts' effective physical properties and influence their transport in aquatic systems. To assess this behavior, C. parvum oocysts were mixed with various suspended sediments under a variety of water chemical conditions, and the resulting settling of the oocysts was observed. Direct microscopic observations showed that oocysts attached to suspended sediments. Settling column and batch experiments demonstrated that oocysts are removed from suspension at a much higher rate when associated with sediments. The rate of oocyst sedimentation depended primarily on the type of sediment with which the oocysts were mixed. Changes in background water conditions had a relatively small impact on the extent of oocyst-particle association and the resulting oocyst deposition. We believe that the ubiquitous association of C. parvum oocysts with suspended particles enhances the sedimentation of oocysts in natural waters and that this interaction should generally be considered when predicting the migration of pathogens in the environment.  相似文献   
62.
TW Greene  LC Hannah 《The Plant cell》1998,10(8):1295-1306
ADP-glucose pyrophosphorylase (AGP) represents a key regulatory step in polysaccharide synthesis in organisms ranging from bacteria to plants. Higher plant AGPs are complex in nature and are heterotetramers consisting of two similar but distinct subunits. How the subunits are assembled into enzymatically active polymers is not yet understood. Here, we address this issue by using naturally occurring null mutants of the Shrunken2 (Sh2) and Brittle2 (Bt2) loci of maize as well as the yeast two-hybrid expression system. In the absence of the maize endosperm large AGP subunit (SH2), the BT2 subunit remains as a monomer in the developing endosperm. In contrast, the SH2 protein, in the absence of BT2, is found in a complex of 100 kD. A direct interaction between SH2 and BT2 was proven when they were both expressed in yeast. Several motifs are essential for SH2:BT2 interaction because truncations removing the N or C terminus of either subunit eliminate SH2:BT2 interactions. Analysis of subunit interaction mutants (sim) also identified motifs essential for protein interactions.  相似文献   
63.
The pyruvate dehydrogenase multienzyme complex from Bacillus stearothermophilus comprises a structural core, composed of 60 dihydrolipoamide acetyltransferase (E2p) subunits, which binds multiple copies of pyruvate decarboxylase (E1p) and dihydrolipoamide dehydrogenase (E3) subunits. After limited proteolysis with chymotrypsin, the N-terminal lipoyl domain of E2p was excised, purified and sequenced. The residual complex, which remained assembled, was then digested with trypsin under mild conditions. This treatment promoted complete disassembly of the complex and the various components were separated by gel filtration and h.p.l.c. A folded fragment of E2p containing about 50 amino acid residues was identified as being responsible for binding the E3 subunits, although, unlike the corresponding region of the E2p or E2o chains of the pyruvate dehydrogenase or 2-oxoglutarate dehydrogenase complexes from Escherichia coli, the fragment also bound E1p molecules. Further peptide purification and sequence analysis allowed the determination of the first 211 amino acid residues of the B. stearothermophilus E2p chain, thus providing the complete primary structure of the lipoyl domain, the E1p/E3-binding domain and the regions of polypeptide chain, probably highly flexible in nature, that link the domains to each other and to the inner-core (E2p-binding) domain. Several of the proteolytically sensitive sites were also identified. The sequence of the B. stearothermophilus E2p chain shows close homology with the sequences of the E2p and E2o chains from E. coli, although significant differences in structure are apparent. Detailed evidence for the sequence of the peptides obtained by limited proteolysis and further chemical and enzymic cleavages have been deposited as Supplementary Publication SUP 50142 (11 pages) at the British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 6BQ, U.K., from whom copies may be obtained as indicated in Biochem. J. (1988) 249, 5.  相似文献   
64.
Chemotactic peptide-induced changes in neutrophil actin conformation   总被引:27,自引:16,他引:11       下载免费PDF全文
The effect of the chemotatic peptide, N- formylmethionylleucylphenylalanine (FMLP), on actin conformation in human neutrophils (PMN) was studied by flow cytometry using fluorescent 7-nitrobenz-2-oxa-1,3-diazole (NBD)-phallacidin to quantitate cellular F-actin content. Uptake of NBD-phallacidin by fixed PMN was saturable and inhibited by fluid phase F-actin but not G-actin. Stimulation of PMN by greater than 1 nM FMLP resulted in a dose-dependent and reversible increase in F-actin in 70-95% of PMN by 30 s. The induced increase in F-actin was blocked by 30 microM cytochalasin B or by a t- BOC peptide that competitively inhibits FMLP binding. Under fluorescence microscopy, NBD-phallacidin stained, unstimulated PMN had faint homogeneous cytoplasmic fluorescence while cells exposed to FMLP for 30 s prior to NBD-phallacidin staining had accentuated subcortical fluorescence. In the continued presence of an initial stimulatory dose of FMLP, PMN could respond with increased F-actin content to the addition of an increased concentration of FMLP. Thus, FMLP binding to PMN induces a rapid transient conversion of unpolymerized actin to subcortical F-actin and repetitive stimulation of F-actin formation can be induced by increasing chemoattractant concentration. The directed movement of PMN in response to chemoattractant gradients may require similar rapid reversible changes in actin conformation.  相似文献   
65.
The association of Cryptosporidium parvum oocysts with suspended particles can alter the oocysts' effective physical properties and influence their transport in aquatic systems. To assess this behavior, C. parvum oocysts were mixed with various suspended sediments under a variety of water chemical conditions, and the resulting settling of the oocysts was observed. Direct microscopic observations showed that oocysts attached to suspended sediments. Settling column and batch experiments demonstrated that oocysts are removed from suspension at a much higher rate when associated with sediments. The rate of oocyst sedimentation depended primarily on the type of sediment with which the oocysts were mixed. Changes in background water conditions had a relatively small impact on the extent of oocyst-particle association and the resulting oocyst deposition. We believe that the ubiquitous association of C. parvum oocysts with suspended particles enhances the sedimentation of oocysts in natural waters and that this interaction should generally be considered when predicting the migration of pathogens in the environment.  相似文献   
66.
Microbially catalyzed precipitation of carbonate minerals is an important process in diverse biological, geological, and engineered systems. However, the processes that regulate carbonate biomineralization and their impacts on biofilms are largely unexplored, mainly because of the inability of current methods to directly observe biomineralization within biofilms. Here, we present a method for in situ, real-time imaging of biomineralization in biofilms and use it to show that Pseudomonas aeruginosa biofilms produce morphologically distinct carbonate deposits that substantially modify biofilm structures. The patterns of carbonate biomineralization produced in situ were substantially different from those caused by accumulation of particles produced by abiotic precipitation. Contrary to the common expectation that mineral precipitation should occur at the biofilm surface, we found that biomineralization started at the base of the biofilm. The carbonate deposits grew over time, detaching biofilm-resident cells and deforming the biofilm morphology. These findings indicate that biomineralization is a general regulator of biofilm architecture and properties.  相似文献   
67.
A 268 bp region (P268) of the pea plastocyanin gene promoter responsible for high-level expression has been shown to interact with the high mobility group proteins HMG-1 and HMG-I/Y isolated from pea shoot chromatin. cDNAs encoding an HMG-1 protein of 154 amino acid residues containing a single HMG-box and a C-terminal acidic tail and an HMG-I/Y-like protein of 197 amino acid residues containing four AT-hooks have been isolated and expressed in Escherichia coli to provide large amounts of full-length proteins. DNase I footprinting identified eight binding sites for HMG-I/Y and six binding sites for HMG-1 in P268. Inhibition of binding by the antibiotic distamycin, which binds in the minor groove of A/T-rich DNA, revealed that HMG-I/Y binding was 400-fold more sensitive than HMG-1 binding. Binding-site selection from a pool of random oligonucleotides indicated that HMG-I/Y binds to oligonucleotides containing stretches of five or more A/T bp and HMG-1 binds preferentially to oligonucleotides enriched in dinucleotides such as TpT and TpG.  相似文献   
68.
The transfer of Cryptosporidium oocysts from the surface water to the sediment beds of streams and rivers influences their migration in surface waters. We used controlled laboratory flume experiments to investigate the deposition of suspended Cryptosporidium parvum oocysts in streambeds. The experimental results demonstrate that hydrodynamic interactions between an overlying flow and a sediment bed cause oocysts to accumulate in the sediments and reduce their concentrations in the surface water. The association of C. parvum with other suspended sediments increased both the oocysts' effective settling velocity and the rate at which oocysts were transferred to the sediment bed. A model for the stream-subsurface exchange of colloidal particles, including physical transport and physicochemical interactions with sediment grains, accurately represented the deposition of both free C. parvum oocysts and oocysts that were attached to suspended sediments. We believe that these pathogen-sediment interactions play an important role in regulating the concentrations of Cryptosporidium in streams and rivers and should be taken into consideration when predicting the fate of pathogens in the environment.  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号