首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   6篇
  2022年   4篇
  2021年   1篇
  2020年   4篇
  2019年   4篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2015年   3篇
  2014年   3篇
  2013年   10篇
  2012年   7篇
  2011年   15篇
  2010年   5篇
  2009年   4篇
  2008年   2篇
  2007年   4篇
  2006年   5篇
  2005年   4篇
  2004年   1篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1997年   1篇
排序方式: 共有94条查询结果,搜索用时 62 毫秒
91.
Abstract Osteoporotic fracture incidence and underlying risk factors like low peak bone mass are heritable, but the genetic basis of osteoporosis remains poorly understood. Based on beam theory, stating that mechanical properties of a structure depend on both the amount and quality of the constituent materials, we investigated the relationship between whole bone mechanical properties and a set of morphological and compositional traits in femurs of eight inbred mouse strains. K-means cluster analysis revealed that individual femora could be classified reliably according to genotype based on the combination of bone area (tissue amount), moment of inertia (tissue distribution), and ash content (tissue quality). This trait combination explained 66–88% of the inter-strain variability in four whole-bone mechanical properties that describe all aspects of the failure process, including measures of brittleness. Stiffness and maximum load were functionally associated with cortical area, while measures of brittleness were associated with ash content. In contrast, work-to-failure was not directly related to a single trait but depended on a combination of trait magnitudes. From these findings, which were entirely consistent with established mechanical theory, we developed a hierarchical paradigm relating the mechanical properties that define bone fragility with readily measurable phenotypic traits that exhibit strong heritability. This paradigm will help guide the search for genes that underlie fracture susceptibility and osteoporosis. Moreover, because the traits we examined are measurable with non-invasive means, this approach may also prove directly applicable to osteoporosis risk assessment.  相似文献   
92.
93.
Laser nerve stimulation using near-infrared laser irradiation has recently been studied in the peripheral nervous system as an alternative method to conventional electrical nerve stimulation. Bringing this method to the vagus nerve model could leverage this emerging stimulation approach to be tested in broader preclinical applications. Here, we report the capability of the laser nerve stimulation method on the rat vagus nerve bundle with a 1505-nm diode laser operated in continuous-wave mode. Studies of the stimulation threshold and laser-induced acute thermal injury to the nerve bundle were also performed to determine a temperature window for safe, reliable and reproducible laser stimulation of the rat vagus nerve bundle. The results show that laser stimulation of the vagus nerve bundle provides reliable and reproducible nerve stimulation in a rat model. These results also confirm a threshold temperature of >42°C with acute nerve damage observed above 46°C. A strong correlation was obtained between the laser time required to raise the nerve temperature above the stimulation threshold and the mean arterial pressure response. Advantages of the method such as non-contact delivery of external stimulus signals at mm scaled distance in air, enhanced spatial selectivity and electrical artefact-free measurements may indicate its potential to counteract the side effects of conventional electrical vagus nerve stimulation.  相似文献   
94.
In this paper, radiation shielding parameters such as mass attenuation coefficients and half value layer (HVL) of some antioxidants are investigated using MCNPX (version 2.4.0). The validation of the generated MCNPX simulation geometry for antioxidant structures is provided by comparing the results with standard WinXcom data for radiation mass attenuation coefficients of antioxidants. Very good agreement between W?NXCOM and MCNPX was obtained. The results from the validated geometry were used to calculate the shielding parameters of different antioxidants. The radiation attenuation properties of each antioxidant were compared with each other. The results showed that, on average, the highest and the lowest radiation mass attenuation coefficients were observed on hesperidin and delphinidin chloride, respectively. It can be concluded that Monte Carlo simulation is a strong tool and an alternate method where experimental investigations are not possible and a standard simulation setup can be used in further studies for different biological structures. It can also be concluded that the obtained results from this study are very useful for radiology and radiotherapy applications where antioxidants are frequently used.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号