首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3247篇
  免费   226篇
  国内免费   4篇
  2021年   35篇
  2020年   19篇
  2018年   28篇
  2017年   24篇
  2016年   56篇
  2015年   78篇
  2014年   78篇
  2013年   109篇
  2012年   136篇
  2011年   166篇
  2010年   96篇
  2009年   68篇
  2008年   125篇
  2007年   140篇
  2006年   101篇
  2005年   122篇
  2004年   129篇
  2003年   138篇
  2002年   87篇
  2001年   58篇
  2000年   56篇
  1999年   52篇
  1998年   38篇
  1997年   29篇
  1996年   20篇
  1995年   19篇
  1994年   22篇
  1992年   32篇
  1991年   47篇
  1990年   21篇
  1989年   33篇
  1988年   19篇
  1987年   31篇
  1985年   46篇
  1984年   44篇
  1983年   41篇
  1982年   40篇
  1981年   56篇
  1980年   47篇
  1979年   35篇
  1978年   48篇
  1977年   41篇
  1976年   37篇
  1975年   42篇
  1974年   36篇
  1973年   26篇
  1966年   18篇
  1964年   18篇
  1956年   18篇
  1935年   17篇
排序方式: 共有3477条查询结果,搜索用时 328 毫秒
991.
992.
993.
1. The rate of forward movement in Paramecium as affected by changes in temperature can be described accurately in terms of the Arrhenius equation. See PDF for Equation 2. For the range from 6–15°, µ = 16,000; from 16–40°, µ = 8,000. These values fall within the limits characteristic for chemical processes. 3. On the principle of velocity control by the slowest rate, it is assumed that in Paramecium at temperatures above normal, control passes from one underlying reaction to another. 4. The views expressed by Rice, the recent results of Crozier, and certain µ values given by Arrhenius all suggest that µ = 16,000 may represent an oxidation, and µ = 8,000 either a modified oxidation or an hydrolysis. 5. For the system of controls, the catenary series O → A → E with the lower µ value attached to the precursor reaction is adequate. We may also assume a cyclical system analogous to Meyerhof''s conception of carbohydrate metabolism in muscle. In this case it is necessary to assign µ = 16,000 to the oxidation of A and E and µ = 8,000 to the synthesis E → O. This model also accounts for the fact that the data might be interpreted as involving, apparently, a depletion of A at the higher temperature.  相似文献   
994.
995.
Vinculin and talin are adhesion plaque proteins which have been shown to interact with each other in vitro. In order to begin to investigate where the talin-binding domain is in vinculin, vinculin was digested with Staphylococcus aureus V8 protease to generate two major fragments of 85 and 30 kDa, and these fragments were purified. Nitrocellulose overlays with 125I-talin and the 125I-85 kDa vinculin fragment and sucrose density gradient centrifugation demonstrated that the talin-binding domain was localized to the 85 kDa vinculin fragment. Quantification of 125I-talin binding in the overlays showed that four times more talin bound to the 85 kDa fragment as compared to intact vinculin. Competitive immunoprecipitation experiments demonstrated that unlabeled 85 kDa fragment was about three-fold more effective at competing for 125I-85 kDa binding to talin than was unlabeled vinculin. These results suggest that the 30 kDa fragment inhibits the vinculin-talin interaction even though the talin-binding domain is localized in the 85 kDa fragment.  相似文献   
996.
997.
Otto Moritz 《Planta》1932,15(4):647-696
Ohne ZusammenfassungMit 13 Textabbildungen.  相似文献   
998.
999.
1000.
Signalling and the control of skeletal muscle size   总被引:1,自引:0,他引:1  
Skeletal muscle is highly adaptive to environmental stimuli and can alter its mass accordingly. This tissue is almost unique in that it can increase its size through two distinct mechanisms. It can grow through a cellular process mediated by cell fusion, or it can increase its size simply by increasing its protein content. Understanding how these processes are regulated is crucial for the development of potential therapies against debilitating skeletal muscle wasting diseases. Two key signalling molecules, Insulin like Growth Factor (IGF) and GDF-8/myostatin, have emerged in recent years to be potent regulators of skeletal muscle size. In this review we bring together recent data highlighting the important and novel aspects of both molecules and their signalling pathways, culminating in a discussion of the cellular and tissue phenotypic outcomes of their stimulation or antagonism. We emphasise the complex regulatory mechanisms and discuss the temporal and spatial differences that control their action, understanding of which is crucial to further their use as potential therapeutic targets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号