首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   206篇
  免费   9篇
  2024年   1篇
  2023年   2篇
  2022年   1篇
  2021年   5篇
  2020年   4篇
  2019年   4篇
  2018年   4篇
  2017年   2篇
  2016年   5篇
  2015年   5篇
  2014年   15篇
  2013年   11篇
  2012年   18篇
  2011年   22篇
  2010年   10篇
  2009年   5篇
  2008年   10篇
  2007年   12篇
  2006年   9篇
  2005年   9篇
  2004年   9篇
  2003年   11篇
  2002年   3篇
  2001年   4篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   5篇
  1986年   1篇
  1985年   3篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1976年   1篇
  1975年   4篇
  1972年   1篇
  1969年   1篇
排序方式: 共有215条查询结果,搜索用时 44 毫秒
141.
142.
Stromal cell polyploidy is a unique phenomenon that occurs during uterine decidualization following embryo implantation, although the developmental mechanism still remains elusive. The general consensus is that the aberrant expression and altered functional activity of cell cycle regulatory molecules at two particular checkpoints G1 to S and G2 to M in the cell cycle play an important role in the development of cellular polyploidy. Despite the compelling evidence of intrinsic cell cycle alteration, it has been implicated that the development of cellular polyploidy may be controlled by specific actions of extracellular growth regulators. Here we show a novel role for heparin-binding EGF-like growth factor (HB-EGF) in the developmental process of stromal cell polyploidy in mice. HB-EGF, which is one of the earliest known molecular mediators of implantation in mice and humans, promotes stromal cell polyploidy via upregulation of cyclin D3. Adenoviral delivery of antisense cyclin D3 attenuates cyclin D3 expression and abrogates HB-EGF-induced stromal cell polyploidy in vitro and in vivo. Collectively, the results demonstrate that the regulation of stromal cell polyploidy and decidualization induced by HB-EGF depend on cyclin D3 induction.  相似文献   
143.
Thrombin (Thromb), activated as part of the clotting cascade, dilates conduit arteries through an endothelial pertussis toxin (PTX)-sensitive G-protein receptor and releases nitric oxide (NO). Thromb also acts on downstream microvessels. Therefore, we examined whether Thromb dilates human coronary arterioles (HCA). HCA from right atrial appendages were constricted by 30-50% with endothelin-1. Dilation to Thromb (10(-4)-1 U/ml) was assessed before and after inhibitors with videomicroscopy. There was no tachyphylaxis to Thromb dilation (maximum dilation = 87.0%, ED(50) = 1.49 x 10(-2)). Dilation to Thromb was abolished with either hirudin or denudation but was not affected by PTX. Neither N(omega)-nitro-l-arginine methyl ester (n = 7), indomethacin (n = 9), (1)H-[1,2,4] oxadiazolo-[4,3-a]quinoxalin-1-one (n = 6), tetraethylammonium chloride (n = 5), nor iberiotoxin (n = 4) reduced dilation to Thromb. However, KCl (maximum dilation = 89 +/- 5 vs. 20 +/- 10%; P < 0.05; n = 7), tetrabutylammonium chloride (maximum dilation = 79 +/- 7 vs. 21 +/- 4%; P < 0.05; n = 5), and charybdotoxin (maximum dilation = 89 +/- 4 vs. 10 +/- 2%; P < 0.05; n = 4) attenuated dilation to Thromb. In contrast to animal models, Thromb-induced dilation in human arterioles is independent of G(i)-protein activation and NO release. However, Thromb dilation is endothelium dependent, is maintained on consecutive applications, and involves activation of K(+) channels. We speculate that an endothelium-derived hyperpolarizing factor contributes to Thromb-induced dilation in HCA.  相似文献   
144.
Here we examine the enantioselectivity of the allosteric and substrate binding sites of murine ribonucleotide reductase (mRR). L-ADP binds to the active site and L-ATP binds to both the s- and a-allosteric sites of mR1 with affinities that are only three- to 10-fold weaker than the values for the corresponding D-enantiomers. These results demonstrate the potential of L-nucleotides for interacting with and modulating the activity of mRR, a cancer chemotherapeutic and antiviral target. On the other hand, we detect no substrate activity for L-ADP and no inhibitory activity for N3-L-dUDP, demonstrating the greater stereochemical stringency at the active site with respect to catalytic activity.  相似文献   
145.
Human L-xylulose reductase (XR) is an enzyme of the glucuronic acid/uronate cycle of glucose metabolism and is a possible target for treatment of the long-term complications of diabetes. In this study we utilised the molecular modelling program DOCK to analyse the 249,071 compounds of the National Cancer Institute Database and retrieved those compounds with high predicted affinity for XR. Several carboxylic acid-based compounds were tested and shown to inhibit XR. These included nicotinic acid (IC50=100 microM), benzoic acid (IC50=29 microM) and their derivatives. These results extend and improve upon the activities of known, commercially available inhibitors of XR such as the aliphatic fatty acid n-butyric acid (IC50=64 microM). To optimise the interaction between the inhibitor and the holoenzyme, the program GRID was used to design de novo compounds based on the inhibitor benzoic acid. The inclusion of a hydroxy-phenyl group and a phosphate to the benzoic acid molecule increased the net binding energy by 1.3- and 2.4-fold, respectively. The resultant compounds may produce inhibitors with improved specificity for XR.  相似文献   
146.
The epithelial Na+ channel (ENaC) belongs to the structurally conserved ENaC/Degenerin superfamily. These channels are blocked by amiloride and its analogues. Several amino acid residues have been implicated in amiloride binding. Primary among these are alphaSer-583, betaGly-525, and gammaGly-542, which are present at a homologous site within the three subunits of ENaC. Mutations of the beta and gamma glycines greatly weakened amiloride block, but, surprisingly, mutation of the serine of the alpha subunit resulted in moderate (<5-fold) weakening of amiloride K(i). We investigated the role of alphaSer-583 in amiloride binding by systematically mutating alphaSer-583 and analyzing the mutant channels with two-electrode voltage clamp. We observed that most mutations had moderate effects on amiloride block, whereas those introducing rings showed dramatic effects on amiloride block. In addition, mutations introducing a beta-methyl group at this site altered the electric field of ENaC, affecting both amiloride binding and the voltage dependence of channel gating. We also found that the His mutation, in addition to greatly weakening amiloride binding, appends a voltage-sensitive gate within the pore of ENaC at low pH. Because diverse residues at alpha583, such as Asn, Gln, Ser, Gly, Thr, and Ala, have similar amiloride binding affinities, our results suggest that the wild type Ser side chain is not important for amiloride binding. However, given that some alphaSer-583 mutations affect the electrical properties of the channel whereas those introducing rings greatly weaken amiloride block, we conclude that amiloride binds at or near this site and that alphaSer-583 may have a role in ion permeation through ENaC.  相似文献   
147.
Summary An improved cytochemical method for the demonstration of -glutamyltransferase is described. The enzyme was demonstrated in almost all normal leucocytes and in platelets. There was markedly reduced activity in most lymphoproliferative disorders. In a single case of Hodgkin's disease, T-lymphocytes showed slight to moderate activity contrasting with the marked activity displayed by Reed—Sternberg cells. The plasma cells of multiple myeloma and plasma cell leukaemia showed activity equal to or stronger than that of their normal counterparts. In acute myeloid leukaemia the positivity varied widely in blast cells, but was consistently increased in monoblasts of acute monoblastic leukaemia. -Glutamyltransferase may serve as a differentiation marker in the study of granulocytic and lymphocytic cell lineages.  相似文献   
148.
The cytosolic fraction of insulin-treated adipocytes exhibits a 2-fold increase in protein kinase activity when Kemptide is used as a substrate. The detection of insulin-stimulated kinase activity is critically dependent on the presence of phosphatase inhibitors such as fluoride and vanadate in the cell homogenization buffer. The cytosolic protein kinase activity exhibits high sensitivity (ED50 = 2 X 10(-10) M) and a rapid response (maximal after 2 min) to insulin. Kinetic analyses of the cytosolic kinase indicate that insulin increases the Vmax of Kemptide phosphorylation and ATP utilization without affecting the affinities of this enzyme toward the substrate or nucleotide. Upon chromatography on anion-exchange and gel filtration columns, the insulin-stimulated cytosolic kinase activity is resolved from the cAMP-dependent protein kinase and migrates as a single peak with an apparent Mr = 50,000-60,000. The partially purified kinase preferentially utilizes histones, Kemptide, multifunctional calmodulin-dependent protein kinase substrate peptide, ATP citrate-lyase, and acetyl-coenzyme A carboxylase as substrates but does not catalyze phosphorylation of ribosomal protein S6, casein, phosvitin, phosphorylase b, glycogen synthase, inhibitor II, and substrate peptides for casein kinase II, protein kinase C, and cGMP-dependent protein kinase. Phosphoamino acid analyses of the 32P-labeled substrates reveal that the insulin-stimulated cytosolic kinase is primarily serine-specific. The insulin-activated cytosolic kinase prefers Mn2+ to Mg2+ and is independent of Ca2+. Unlike ribosomal protein S6 kinase and protease-activated kinase II, the insulin-sensitive cytosolic kinase is fluoride-insensitive. Taken together, these results indicate that a novel cytosolic protein kinase activity is activated by insulin.  相似文献   
149.
Summary The nature and amounts of by-products formed during conversion of sugar beets to ethanol byZ. mobilis in Conventional Submerged Fermentation (CSF) and Solid-State Fermentation (SSF) were investigated. It was found that the bacterium produced fewer by-products in SSF than CSF, and that by-products profile was different. The influence of fermentation temperature on synthesis of by-products in SSF was also studied. High fermentation temperature favoured sorbitol synthesis and low fermentation temperature the synthesis of levan. The best results were obtained at 35°C. An ethanol yield of up to 95% of the theoretical value with final ethanol concentration of 142 g/L were obtained.  相似文献   
150.
Purified rat liver ATP citrate-lyase is phosphorylated on serine residues by an insulin-stimulated cytosolic kinase activity partially purified from rat adipocytes [Yu, Khalaf & Czech (1987) J. Biol. Chem. 262, 16677-16685]. The Km for lyase phosphorylation by this hormone-sensitive kinase activity is approx. 3 microM. Two-dimensional tryptic-peptide mapping of the 32P-labelled lyase reveals that the kinase-catalysed phosphorylation occurs primarily on a specific peptide. In intact 32P-labelled adipocytes, insulin enhances the serine phosphorylation of ATP citrate-lyase by 2-3-fold. Tryptic digestion of the 32P-labelled lyase immunopurified from insulin-treated adipocytes also yields one major phosphopeptide. 32P-labelled lyase tryptic peptides derived from labelling experiments in vitro and in vivo exhibit identical electrophoretic and chromatographic migration profiles. Furthermore, radio-sequencing of the phosphopeptide from lyase 32P-labelled in vitro indicates that serine-3 from the N-terminus is phosphorylated by the insulin-stimulated cytosolic kinase, in agreement with previous studies on the position of the phosphoserine residue in ATP citrate-lyase isolated from insulin-treated cells. Taken together, the similarity in site-specific phosphorylation of ATP citrate-lyase from insulin-treated adipocytes to that catalysed by the hormone-activated cytosolic kinase in vitro strongly suggests that this kinase mediates insulin action on lyase phosphorylation in intact cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号