首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2901篇
  免费   270篇
  2023年   17篇
  2022年   12篇
  2021年   82篇
  2020年   55篇
  2019年   56篇
  2018年   71篇
  2017年   56篇
  2016年   90篇
  2015年   165篇
  2014年   158篇
  2013年   178篇
  2012年   246篇
  2011年   255篇
  2010年   133篇
  2009年   109篇
  2008年   173篇
  2007年   189篇
  2006年   176篇
  2005年   134篇
  2004年   133篇
  2003年   123篇
  2002年   102篇
  2001年   37篇
  2000年   16篇
  1999年   27篇
  1998年   26篇
  1997年   19篇
  1996年   18篇
  1995年   15篇
  1994年   9篇
  1993年   14篇
  1992年   17篇
  1991年   11篇
  1990年   18篇
  1989年   6篇
  1985年   7篇
  1984年   11篇
  1983年   8篇
  1982年   10篇
  1981年   7篇
  1978年   6篇
  1977年   7篇
  1976年   6篇
  1974年   8篇
  1973年   9篇
  1971年   5篇
  1970年   6篇
  1967年   6篇
  1964年   8篇
  1961年   6篇
排序方式: 共有3171条查询结果,搜索用时 15 毫秒
111.
Autophagy is a preserved cytoplasmic self-degradation process and endorses recycling of intracellular constituents into bioenergetics for the controlling of cellular homeostasis. Functional autophagy process is essential in eliminating cytoplasmic waste components and helps in the recycling of some of its constituents. Studies have revealed that neurodegenerative disorders may be caused by mutations in autophagy-related genes and alterations of autophagic flux. Alzheimer’s disease (AD) is an irrevocable deleterious neurodegenerative disorder characterized by the formation of senile plaques and neurofibrillary tangles (NFTs) in the hippocampus and cortex. In the central nervous system of healthy people, there is no accretion of amyloid β (Aβ) peptides due to the balance between generation and degradation of Aβ. However, for AD patients, the generation of Aβ peptides is higher than lysis that causes accretion of Aβ. Likewise, the maturation of autophagolysosomes and inhibition of their retrograde transport creates favorable conditions for Aβ accumulation. Furthermore, increasing mammalian target of rapamycin (mTOR) signaling raises tau levels as well as phosphorylation. Alteration of mTOR activity occurs in the early stage of AD. In addition, copious evidence links autophagic/lysosomal dysfunction in AD. Compromised mitophagy is also accountable for dysfunctional mitochondria that raises Alzheimer’s pathology. Therefore, autophagic dysfunction might lead to the deposit of atypical proteins in the AD brain and manipulation of autophagy could be considered as an emerging therapeutic target. This review highlights the critical linkage of autophagy in the pathogenesis of AD, and avows a new insight to search for therapeutic target for blocking Alzheimer’s pathogenesis.  相似文献   
112.
The canonical Wnt signaling pathway is a master cell regulator involved in CD8+ T cell proliferation and differentiation. In human CD8+ T cells, this pathway induces differentiation into memory cells or a “stem cell memory like” population, which is preferentially present in cord blood. To better understand the role of canonical Wnt signals in neonatal or adult blood, we compared the proteins associated with β-catenin, in nonstimulated and Wnt3a-stimulated human neonatal and adult naive CD8+ T cells. Differentially recruited proteins established different complexes in adult and neonatal cells. In the former, β-catenin-associated proteins were linked to cell signaling and immunological functions, whereas those of neonates were linked to proliferation and metabolism. Wnt3a stimulation led to the recruitment and overexpression of Wnt11 in adult cells and Wnt5a in neonatal cells, suggesting a differential connexion with planar polarity and Wnt/Ca2+ noncanonical pathways, respectively. The chromatin immunoprecipitation polymerase chain reaction β-catenin was recruited to a higher level on the promoters of cell renewal genes in neonatal cells and of differentiation genes in those of adults. We found a preferential association of β-catenin with CBP in neonatal cells and with p300 in the adult samples, which could be involved in a higher self-renewal capacity of the neonatal cells and memory commitment in those of adults. Altogether, our results show that different proteins associated with β-catenin during Wnt3a activation mediate a differential response of neonatal and adult human CD8+ T cells.  相似文献   
113.
114.
Spotted‐wing drosophila, Drosophila suzukii (Matsumura), is an invasive pest affecting fruit production in many regions of the world. Insecticides are the primary tactic for controlling D. suzukii in organic as well as conventional production systems. Organic growers have a greater challenge because fewer insecticides are approved for use in organic agriculture. The most effective organically approved product is spinosad, but alternatives are needed because of label restrictions limiting the number of applications per year, toxicity to beneficial arthropods and the risk of developing resistance. We evaluated several organically approved insecticides against D. suzukii in laboratory assays and field trials conducted on organic blueberry and raspberry farms. Spinosad was consistently the most effective insecticide, but a few other insecticides such as azadirachtin + pyrethrins, Chromobacterium subtsugae and sabadilla alkaloids showed moderate activity. None of the treatments had long residual activity. Mortality started to decline by 3 days after treatment, and by 5 days after application, the treatments were not different from the controls. These products may be useful in rotation programmes, necessary for reducing reliance on spinosad and mitigating resistance. Cultural and biological control approaches are needed in fruit production for D. suzukii management, but insecticides will likely continue to be the dominant management tactic while these other approaches are being optimized and adopted.  相似文献   
115.
Spotted‐wing drosophila, Drosophila suzukii Matsumura, is an invasive pest in the United States that causes considerable damage to fruit crops. It is responsible for many millions of dollars of revenue loss. The female D. suzukii has a heavily sclerotized ovipositor and can lay eggs in ripening or ripe fruit. The arrival of this invasive species has disrupted existing integrated pest management programmes, and growers rely on repeated insecticide applications to protect fruit. Organic growers have few chemical control options, and their reliance on spinosad increases the risk of developing insecticide resistance. We hypothesized that combining phagostimulants with insecticides would increase insecticide efficacy by prompting flies to spend more time in contact with residues. Therefore, the objective of this study was to evaluate the effectiveness of sucrose and the yeast Saccharomyces cerevisiae as phagostimulants in combination with organic biopesticides against D. suzukii in blueberries. Adding sucrose with or without yeast did not improve insecticide efficacy in terms of adult fly mortality or fruit infestation. Spinosad was very effective in all experiments, and for this product, there is little room for improvement. The phagostimulants had no effect on residual activity of any insecticide. The addition of sucrose with or without yeast did not improve the effectiveness of organic insecticides for D. suzukii. Concentrations of these phagostimulants in our experiments (0.36%) may have been too low to elicit a response. Further research is recommended to test different types and concentrations of phagostimulants.  相似文献   
116.
There is currently great interest in the study of peptide aggregation by -sheet formation because of its relevance in pathological states or in the design of self-assembling systems of technological interest. NMR studies of -sheet aggregates are difficult because of their long correlation times and spectral degeneracy. In this communication we demonstrate the combination of a semiselective TOCSY-NOESY experiment with partial deuterium exchange of labile protons to assign inter-molecular NOE cross peaks and prove the presence of a soluble parallel -sheet in fast exchange with monomeric Ac-ASTTTNYT-NH2 (Ac-T-NH2) in solution.  相似文献   
117.
This paper presents a DNA extraction method suitable for fresh, herbarium-stored, lichenized and other fungal specimens. The method is fast and reliable, comparatively inexpensive and is suitable for obtaining PCR amplification quality DNA from large numbers of samples in a short time. The method has been tested with over 300 samples ofAscochyta, Phyllosticta, Ramalina, Parmelia andPhysconia. Amplifiable fungal DNA was extracted from pure cultures, leaf lesions, whole thalli and dissected only-fungal sections of lichenized fungi. In addition, the method has proved suitable for use with herbarium specimens of both lichenized and non-lichenized fungi, stored as dried pure cultures or dried infected plant material.  相似文献   
118.
The SDHD gene encodes one of the two membrane-anchoring proteins of the succinate dehydrogenase (complex II) of the mitochondrial electron transport chain. This gene has recently been proposed to be involved in oxygen sensing because mutations that cause loss of its function produce hereditary familiar paraganglioma, a tumor of the carotid body (CB), the main arterial chemoreceptor that senses oxygen levels in the blood. Here, we report the generation of a SDHD knockout mouse, which to our knowledge is the first mammalian model lacking a protein of the electron transport chain. Homozygous SDHD(-/-) animals die at early embryonic stages. Heterozygous SDHD(+/-) mice show a general, noncompensated deficiency of succinate dehydrogenase activity without alterations in body weight or major physiological dysfunction. The responsiveness to hypoxia of CBs from SDHD(+/-) mice remains intact, although the loss of an SDHD allele results in abnormal enhancement of resting CB activity due to a decrease of K(+) conductance and persistent Ca(2+) influx into glomus cells. This CB overactivity is linked to a subtle glomus cell hypertrophy and hyperplasia. These observations indicate that constitutive activation of SDHD(+/-) glomus cells precedes CB tumor transformation. They also suggest that, contrary to previous beliefs, mitochondrial complex II is not directly involved in CB oxygen sensing.  相似文献   
119.
In this work the porin Omp1 of Serratia marcescens was expressed in a porin deficient mutant (Escherichia coli UH302) and its functionality studied following the accumulation of ciprofloxacin in bacteria. The protein was extracted, purified and reconstituted in proteoliposomes of different composition (lipopolysaccharide (LPS), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and, 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)). Maximum extraction of the detergent was achieved applying different steps of dialysis and centrifugation. Proteolipid sheets with different composition were spread onto mica and observed by atomic force microscopy. Two-dimensional crystal of Omp1 was not observed in any case due to low resolution achieved. Judging from the images features POPC is the most suitable phospholipid to enhance 2D lattice formation for Omp1.  相似文献   
120.
N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP), a natural inhibitor of pluripotent hematopoietic stem cell proliferation, has been suggested as capable of promoting an angiogenic response. We studied whether Ac-SDKP stimulates endothelial cell proliferation, migration, and tube formation; enhances angiogenic response in the rat cornea after implantation of a tumor spheroid; and increases capillary density in rat hearts with myocardial infarction (MI). In vitro, an immortal BALB/c mouse aortic endothelial 22106 cell line was used to determine the effects of Ac-SDKP on endothelial cell proliferation and migration and tube formation. In vivo, a 9L-gliosarcoma cell spheroid (250-300 microm in diameter) was implanted in the rat cornea and vehicle or Ac-SDKP (800 microg.kg(-1).day(-1) ip) infused via osmotic minipump. Myocardial capillary density was studied in rats with MI given either vehicle or Ac-SDKP. We found that Ac-SDKP 1) stimulated endothelial cell proliferation and migration and tube formation in a dose-dependent manner, 2) enhanced corneal neovascularization, and 3) increased myocardial capillary density. Endothelial cell proliferation and angiogenesis stimulated by Ac-SDKP could be beneficial in cardiovascular diseases such as hypertension and MI. Furthermore, because Ac-SDKP is mainly cleaved by ACE, it may partially mediate the cardioprotective effect of ACE inhibitors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号