首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   7篇
  2014年   1篇
  2013年   2篇
  2012年   4篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2004年   3篇
  2003年   5篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   7篇
  1998年   1篇
  1995年   1篇
  1992年   6篇
  1991年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1979年   4篇
  1977年   1篇
排序方式: 共有59条查询结果,搜索用时 15 毫秒
41.
Measurements of the transepithelial electrical resistance correlated with freeze-fracture observations have been used to study the process of tight junction formation under various experimental conditions in monolayers of the canine kidney epithelial cell line MDCK. Cells derived from previously confluent cultures and plated immediately after trypsin- EDTA dissociation develop a resistance that reaches its maximum value of several hundred ohms-cm(2) after approximately 24 h and falls to a steady-state value of 80-150 ohms- cm(2) by 48 h. The rise in resistance and the development of tight junctions can be completely and reversibly prevented by the addition of 10 μg/ml cycloheximide at the time of plating, but not when this inhibitor is added more than 10 h after planting. Thus tight junction formation consists of separable synthetic and assembly phases. These two phases can also be dissociated and the requirement for protein synthesis after plating eliminated if, following trypsinization, the cells are maintained in spinner culture for 24 h before plating. The requirement for protein synthesis is restored, however, if cells maintained in spinner culture are treated with trypsin before plating. Actinomycin D prevents development of resistance only in monolayers formed from cells derived from sparse rather than confluent cultures, but new mRNA synthesis is not required if cells obtained from sparse cultures are maintained for 24 h in spinner culture before plating. Once a steady-state resistance has been reached, its maintenance does not require either mRNA or protein synthesis; in fact, inhibition of protein synthesis causes a rise in the resistance over a 30-h period. Following treatments that disrupt the junctions in steady- state monolayers recovery of resistance also does not require protein synthesis. These observations suggest that proteins are involved in tight junction formation. Such proteins, which do not turn over rapidly under steady-state conditions, are destroyed by trypsinization and can be resynthesized in the absence of stable cell-cell or cell-substratum contact. Messenger RNA coding for proteins involved in tight junction formation is stable except when cells are sparsely plated, and can also be synthesized without intercellular contacts or cell-substratum attachment.  相似文献   
42.
Since the initial work of Jukes and Cantor (1969), a number of procedures have been developed to estimate the expected number of nucleotide substitutions corresponding to a given observed level of nucleotide differentiation assuming particular evolutionary models. Unlike the proportion of different sites, the expected number of substitutions that would have occurred grows linearly with time and therefore has had great appeal as an evolutionary distance. Recently, however, a number of authors have tried to develop improved statistical approaches for generating and evaluating evolutionary distances (Schoniger and von Haeseler 1993; Goldstein and Polock 1994; Tajima and Takezaki 1994). These studies clearly show that the estimated number of nucleotide substitutions is generally not the best estimator for use in reconstruction of phylogenetic relationships. The reason for this is that there is often a large error associated with the estimation of this number. Therefore, even though its expectation is correct (i.e., on average the expected number of substitutions is proportional to time- -but see Tajima 1993), it is not expected to be as useful as estimators designed to have a lower variance.   相似文献   
43.
Rods and cones contain closely related but distinct G protein-coupled receptors, opsins, which have diverged to meet the differing requirements of night and day vision. Here, we provide evidence for an exception to that rule. Results from immunohistochemistry, spectrophotometry, and single-cell RT-PCR demonstrate that, in the tiger salamander, the green rods and blue-sensitive cones contain the same opsin. In contrast, the two cells express distinct G protein transducin alpha subunits: rod alpha transducin in green rods and cone alpha transducin in blue-sensitive cones. The different transducins do not appear to markedly affect photon sensitivity or response kinetics in the green rod and blue-sensitive cone. This suggests that neither the cell topology or the transducin is sufficient to differentiate the rod and the cone response.  相似文献   
44.
Non-uniform stress and strain fields are prevalent in many tissues in vivo, and often exacerbated by disease or injury. These mechanical gradients potentially play a role in contributing to pathological conditions, presenting a need for experimental tools to allow investigation of cell behavior within non-uniformly stimulated environments. Herein, we employ two in vitro cell-stretching devices (one previously published; one newly presented) capable of subjecting cells to cyclic, non-uniform stretches upon the surface of either a circular elastomeric membrane or a cylindrical PDMS tube. After 24 hours of cyclic stretch, 10T1/2 cells on both devices showed marked changes in long-axis orientation, with tendencies to align parallel to the direction of minimal deformation. The degree of this response varied depending on location within the stretch gradients. These results demonstrated the feasibility of conducting cell mechanobiology investigations with the two novel devices, while also highlighting the experimental capabilities of non-uniform mechanical environments for these types of studies. Such capabilities include robust data collection for developing mechanobiological dose-response curves, signal threshold identification, and potential spatial targeting for drug delivery.  相似文献   
45.
Nanodiscs are nanometer scale planar membranes of controlled size that are rendered soluble in aqueous solution via an encircling amphipathic membrane scaffold protein "belt" (Bayburt, T. H., Grinkova, Y. V., and Sligar, S. G. (2002) Nano. Lett. 2, 853-856). Integral membrane proteins can be self-assembled into the Nanodisc bilayer with defined stoichiometry, which allows an unprecedented opportunity to investigate the nature of the oligomerization state of a G-protein-coupled receptor and its coupling to heterotrimeric G-proteins. We generated Nanodiscs having one and two rhodopsins present in the 10-nm-diameter lipid bilayer domain. Efficient transducin activation and isolation of a high affinity transducin-metarhodopsin II complex was demonstrated for a monodisperse and monomeric receptor. A population of Nanodiscs containing two rhodopsins was generated using an increased ratio of receptor to membrane scaffold protein in the self-assembly mixture. The two-rhodopsin population was isolated and purified by density gradient centrifugation. Interestingly, in this case, only one of the two receptors present in the Nanodisc was able to form a stable metarhodopsin II-G-protein complex. Thus there is clear evidence that a monomeric rhodopsin is capable of full coupling to transducin. Importantly, presumably due to steric interactions, it appears that only a single receptor in the Nanodiscs containing two rhodopsins can interact with G-protein. These results have important implications for the stoichiometry of receptor-G-protein coupling and cross talk in signaling pathways.  相似文献   
46.
Phototaxis in Archaea employs an integral membrane complex composed of a photoreceptor that is similar to the light-driven proton pump bacteriorhodopsin, and a transducer protein that is similar to the familiar eubacterial chemotaxis receptors. Recent structural studies have revealed how these proteins are assembled in the membrane, and provide a heuristic framework for future work on the mechanism of signal transduction by this important class of molecules.  相似文献   
47.
In structure-function studies on bovine rhodopsin by in vitro site-specific mutagenesis, we have prepared three mutants in the cytoplasmic loop between the putative transmembrane helices E and F. In each mutant, charged amino acid residues were replaced by neutral residues: mutant 1, Glu239----Gln; mutant 2, Lys248----Leu; and mutant 3, Glu247----Gln, Lys248----Leu, and Glu249----Gln. The mutant rhodopsin genes were expressed in monkey kidney (COS-1) cells. After the addition of 11-cis-retinal to the cells, the rhodopsin mutants were purified by immunoaffinity adsorption. Each mutant gave a wild-type rhodopsin visible absorption spectrum. The mutants were assayed for their ability to stimulate the GTPase activity of transducin in a light-dependent manner. While mutants 1 and 3 showed wild-type activity, mutant 2 (Lys248----Leu) was inactive.  相似文献   
48.
49.
Jin S  McKee TD  Oprian DD 《FEBS letters》2003,542(1-3):142-146
Previous studies by Papermaster and coworkers introduced the use of rhodopsin-green fluorescent protein (rho-GFP) fusion proteins in the construction of transgenic Xenopus laevis with retinal rod photoreceptor cell-specific transgene expression [Moritz et al., J. Biol. Chem. 276 (2001) 28242-28251]. These pioneering studies have helped to develop the Xenopus system not only for use in the investigation of rhodopsin biosynthesis and targeting, but for studies of the phototransduction cascade as well. However, the rho-GFP fusion protein used in the earlier work had only 50% of the specific activity of wild-type rhodopsin for activation of transducin and only 10% of the activity of wild-type in rhodopsin kinase assays. While not a problem for the biosynthesis studies, this does present a problem for investigation of the phototransduction cascade. We report here an improved rhodopsin/EGFP fusion protein in which placement of the EGFP domain at the C-terminus of rhodopsin results in wild-type activity for activation of transducin, wild-type ability to serve as a substrate for rhodopsin kinase, and wild-type localization of the protein to the rod photoreceptor cell outer segment in transgenic X. laevis.  相似文献   
50.
Das J  Crouch RK  Ma JX  Oprian DD  Kono M 《Biochemistry》2004,43(18):5532-5538
In rhodopsin, the 9-methyl group of retinal has previously been identified as being critical in linking the ligand isomerization with the subsequent protein conformational changes that result in the activation of its G protein, transducin. Here, we report studies on the role of this methyl group in the salamander rod and cone pigments. Pigments were generated by combining proteins expressed in COS cells with 11-cis 9-demethyl retinal, where the 9-methyl group on the polyene chain has been deleted. The absorption spectra of all pigments were blue-shifted. The red cone and blue cone/green rod pigments were unstable to hydroxylamine; whereas, the rhodopsin and UV cone pigments were stable. The lack of the 9-methyl group of the chromophore did not affect the ability of the red cone and blue cone/green rod pigments to activate transducin. On the other hand, with the rhodopsin and UV cone pigments, activation was diminished. Interestingly, the red cone pigment containing the retinal analogue remained active longer than the native pigment. Thus, the 9-methyl group of retinal is not important in the activation pathway of the red cone and blue cone/green rod pigments. However, for the red cone pigment, the 9-methyl group of retinal appears to be critical in the deactivation pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号