首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   18篇
  2015年   3篇
  2014年   5篇
  2013年   4篇
  2012年   6篇
  2011年   5篇
  2010年   2篇
  2009年   6篇
  2008年   3篇
  2007年   4篇
  2006年   4篇
  2005年   4篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   4篇
  1999年   6篇
  1998年   6篇
  1997年   5篇
  1996年   2篇
  1995年   5篇
  1994年   4篇
  1993年   2篇
  1992年   3篇
  1991年   7篇
  1990年   5篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1986年   6篇
  1985年   5篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1981年   4篇
  1977年   3篇
  1975年   3篇
  1974年   2篇
  1972年   1篇
  1960年   1篇
排序方式: 共有141条查询结果,搜索用时 140 毫秒
131.
We examined morphological and ultrastructural differences in chloroplasts of cotton leaves and the fruiting organs, bract, and capsule wall to advance our understanding of their commonly observed differences in photosynthetic efficiency. Chloroplasts from leaves were large (7.1 μm long in cross section), lens shaped with a well developed membrane system differentiated into grana and stroma lamellae that occupied the large cross-sectional area (12.3 μm2) of the organelle. A few small plastoglobuli and starch grains were scattered in the stroma region. The bract chloroplasts were correlative of leaf chloroplasts in size (6.8 μm in length) and shape with the exception that the bract chloroplasts exhibited greater thylakoid number per granum (15.8) than the leaf chloroplasts (10.5). In contrast to leaf and bract, the capsule wall chloroplasts were smaller in size (4.3 μm) and cross sectional area (6.8 μm2) than either the leaf or bract. The most intriguing feature of the capsule wall chloroplasts was its domination by large starch granules (5.3 μm2) in the stroma which filled the whole chloroplast coercing the membrane system to move towards the periphery of the organelle. Grana number and thylakoids per granum were lowest in the capsule wall chloroplasts. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
132.
133.
134.
A series of controlled-environment experiments were conducted to elucidate the effects of Meloidogyne incognita on host physiology and plant-water relations of two cotton (Gossypium hirsutum) cultivars that differed in their susceptibility to nematode infection. Inoculation of M. incognita-resistant cultivar Auburn 634 did not affect growth, stomatal resistance, or components of plant-water potential relative to uninoculated controls. However, nematode infection of the susceptible cultivar Stoneville 506 greatly suppressed water flow through intact roots. This inhibition exceeded 28% on a root-length basis and was similar to that observed as a consequence of severe water stress in a high evaporative demand environment. Nematodes did not affect the components of leaf water potential, stomatal resistance, transpiration, or leaf temperature. However, these factors were affected by the interaction of M. incognita and water stress. Our results indicate that M. incognita infection may alter host-plant water balance and may be a significant factor in early-season stress on cotton seedlings.  相似文献   
135.
136.
137.
138.
139.
This paper describes a simple method which uses screen-caged thermocouple psychrometers to measure the water potential components of the roots of cotton (Gossypium hirsutum L.) grown in pots of sand or nutrient solution. Water stress was imposed by withholding irrigation from the sand-grown plants. Sampling was conducted inside a humidified chamber to prevent evaporative losses. The results obtained were within the range expected and comparable to the few published values for other plants. The technique enabled the demonstration of osmotic adjustment in cotton leaves and roots. Published with the approval of the Director of the Arkansas Agricultural Experiment Station.  相似文献   
140.
In frost-hardened spinach leaves ( Spinucea oleracea L. ev. Vroeg Reuzenblad ) an enhanced content of water-soluble non-protein sulfhydryl compounds was observed. The enhancement was due to higher levels of glutathione as well as to other non-protein-bound sulfhydryl compounds. In addition glutathione reductase activity was increased upon hardening. The affinity of the enzyme for oxidized glutathione was slightly lowered during hardening. The significance of glutathione accumulation during frost-hardening is discussed. Exposure of spinach to NaCl-stress did not affect the levels of glutathione and glutathione reductase of the leaves. In addition the kinetic properties of the enzyme remained unaltered by salinity. It is suggested that glutathione and glutathione reductase activity are not involved in adaptation of spinach to saline conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号