首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   16篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   5篇
  2016年   7篇
  2015年   12篇
  2014年   10篇
  2013年   7篇
  2012年   9篇
  2011年   4篇
  2010年   6篇
  2009年   4篇
  2008年   1篇
  2007年   5篇
  2006年   4篇
  2005年   7篇
  2004年   2篇
  2002年   1篇
  2001年   4篇
  2000年   4篇
  1999年   5篇
  1998年   6篇
  1997年   3篇
  1996年   6篇
  1995年   2篇
  1994年   1篇
  1992年   1篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1978年   2篇
  1977年   3篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1969年   1篇
  1965年   1篇
  1934年   1篇
排序方式: 共有144条查询结果,搜索用时 31 毫秒
61.
The endoplasmic reticulum (ER) is the site of synthesis for nearly one-third of the eukaryotic proteome and is accordingly endowed with specialized machinery to ensure that proteins deployed to the distal secretory pathway are correctly folded and assembled into native oligomeric complexes. Proteins failing to meet this conformational standard are degraded by ER-associated degradation (ERAD), a complex process through which folding-defective proteins are selected and ultimately degraded by the ubiquitin-proteasome system. ERAD proceeds through four tightly coupled steps involving substrate selection, dislocation across the ER membrane, covalent conjugation with polyubiquitin, and proteasomal degradation. The ERAD machinery shows a modular organization with central ER membrane-embedded ubiquitin ligases linking components responsible for recognition in the ER lumen to the ubiquitin-proteasome system in the cytoplasm. The core ERAD machinery is highly conserved among eukaryotes and much of our basic understanding of ERAD organization has been derived from genetic and biochemical studies of yeast. In this article we discuss how the core ERAD machinery is organized in mammalian cells.The endoplasmic reticulum (ER) is the entry portal to the secretory pathway and is comprised of a specialized oxidative environment in which nascent polypeptides fold and assemble into native structures with the aid of a unique set of molecular chaperones, folding catalysts, and posttranslational modifications (Helenius and Aebi 2004). An estimated one-third of the mammalian genome encodes proteins destined for the secretory pathway. The ER folding apparatus must therefore be able to accommodate substrates that are highly diverse in terms of structure, oligomeric state, and folding rate. This diversity requires stringent quality control systems to maintain biosynthetic fidelity and to prevent the accumulation or deployment of misfolded proteins that can cause proteotoxicity. The importance of these systems is evidenced by the large number of human diseases that are linked to protein misfolding in the secretory pathway (Guerriero and Brodsky 2012).ER-associated degradation (ERAD) is the temporally and spatially coordinated surveillance process charged with clearance of aberrant proteins in the ER. Much of what is known about this system has come from studies that have exploited genetic analysis in yeast (reviewed in Vembar and Brodsky 2008; Xie and Ng 2010). The essential features of ERAD are highly conserved among eukaryotes; however, because of the much larger proteome and multicellular lifestyle, the ERAD system in metazoans is considerably more complex than in fungi. In this article, we review the organization and function of the ERAD pathway in mammalian cells.In ERAD, proteins that have been biosynthetically integrated into the ER membrane or translocated into the lumen are ultimately degraded by the ubiquitin-proteasome system (UPS). This imposes a fundamental topological constraint, in that the substrates are not initially present in the same compartment as the proteolytic system that degrades them. Thus the ERAD system necessarily spans the ER bilayer, and degradation must be mechanistically coupled to transfer (dislocation) of substrates to the cytoplasm. ERAD can be envisioned as encompassing four distinct, coupled steps (Fig. 1): (1) substrate recognition; (2) dislocation across the lipid bilayer; (3) addition (and subsequent removal) of polyubiquitin adducts; and (4) degradation by the 26S proteasome.Open in a separate windowFigure 1.Key steps in ERAD. ERAD occurs through a series of temporally ordered steps, which include: Step 1—Recognition: Molecular chaperones and lectins within the ER lumen interact with incompletely folded or unassembled clients. These factors link substrate recognition to the dislocation machinery by binding to membrane-embedded adaptors. Step 2—Dislocation: Substrates are dislocated across the bilayer presumably through proteinaceous pores (dislocons), via a process coupled to the energy derived from ATP hydrolysis by VCP/p97. Step 3—Ubiquitination: On gaining access to the cytosol, substrates are polyubiquitinated by E3 ligases. Step 4—Degradation: Ubiquitinated substrates are degraded by cytosolic 26S proteasomes.  相似文献   
62.

Background

High-throughput genotype (HTG) data has been used primarily in genome-wide association (GWA) studies; however, GWA results explain only a limited part of the complete genetic variation of traits. In systems genetics, network approaches have been shown to be able to identify pathways and their underlying causal genes to unravel the biological and genetic background of complex diseases and traits, e.g., the Weighted Gene Co-expression Network Analysis (WGCNA) method based on microarray gene expression data. The main objective of this study was to develop a scale-free weighted genetic interaction network method using whole genome HTG data in order to detect biologically relevant pathways and potential genetic biomarkers for complex diseases and traits.

Results

We developed the Weighted Interaction SNP Hub (WISH) network method that uses HTG data to detect genome-wide interactions between single nucleotide polymorphism (SNPs) and its relationship with complex traits. Data dimensionality reduction was achieved by selecting SNPs based on its: 1) degree of genome-wide significance and 2) degree of genetic variation in a population. Network construction was based on pairwise Pearson's correlation between SNP genotypes or the epistatic interaction effect between SNP pairs. To identify modules the Topological Overlap Measure (TOM) was calculated, reflecting the degree of overlap in shared neighbours between SNP pairs. Modules, clusters of highly interconnected SNPs, were defined using a tree-cutting algorithm on the SNP dendrogram created from the dissimilarity TOM (1-TOM). Modules were selected for functional annotation based on their association with the trait of interest, defined by the Genome-wide Module Association Test (GMAT). We successfully tested the established WISH network method using simulated and real SNP interaction data and GWA study results for carcass weight in a pig resource population; this resulted in detecting modules and key functional and biological pathways related to carcass weight.

Conclusions

We developed the WISH network method which is a novel 'systems genetics' approach to study genetic networks underlying complex trait variation. The WISH network method reduces data dimensionality and statistical complexity in associating genotypes with phenotypes in GWA studies and enables researchers to identify biologically relevant pathways and potential genetic biomarkers for any complex trait of interest.
  相似文献   
63.
Composite antibody mixtures designed to combat diseases present a new, rapidly emerging technology in the field of biopharmaceuticals. The combination of multiple antibodies can lead to increased effector response and limit the effect of escape variants that can propagate the disease. However, parallel development of analytical technologies is required to provide fast, thorough, accurate, and robust characterization of these mixtures. Here, we evaluate the utility of native mass spectrometry on an Orbitrap platform with high mass resolving power to characterize composite mixtures of up to 15 separate antibodies. With this technique, unambiguous identification of each antibody in the mixtures was achieved. Mass measurements of the intact antibodies varied 7 ppm on average, allowing highly reproducible identification and quantitation of each compound in these complex mixtures. We show that with the high mass-resolving power and robustness of this technology, high-resolution native mass spectrometry can be used efficiently even for batch-to-batch characterization.  相似文献   
64.

Background  

Epilepsy is a neurological disorder, characterized by recurrent unprovoked seizures which have a high impact on the individual as well as on society as a whole. In addition to the economic burden, epilepsy imposes a substantial burden on the patients and their surroundings. Patients with uncontrolled epilepsy depend heavily on informal care and on health care professionals. About 30% of patients suffer from drug-resistant epilepsy. The ketogenic diet can be a treatment of last resort, especially for children. The beneficial effect of the ketogenic diet has been proven, but information is lacking about its cost-effectiveness. In the current study we will evaluate the (cost-) effectiveness of the ketogenic diet in children and adolescents with intractable epilepsy.  相似文献   
65.
66.
67.
Scydmaenine beetles are commonly described as predators specialized in capturing and feeding on armored mites of the order Oribatida, and documented cases of feeding on other live arthropods have not been known. Based on laboratory observations and a broad choice of Acari (armored and soft‐bodied) and other soil arthropods, food preferences and associated behavior of two scydmaenine species are clarified and described. Adults of Scydmaenus tarsatus ignored oribatid and mesostigmatan mites, but readily attacked and fed on a soft‐bodied Rhizoglyphus sp. (Acaridae), and on small springtails, especially on Ceratophysella denticulata (Hypogastruridae). A water drinking behavior was observed for this species, not reported previously in any Staphylinidae. Scydmaenus hellwigii ignored all tested Acari (including Rhizoglyphus) and scavenged on dead neanurine collembolans or freshly cut pieces of large springtails; a long term culture was maintained by feeding beetles with isotomid springtails. Previously reported strict specialization of Scydmaenus as a predator on Oribatida was not confirmed and it is concluded that the studied species feed on live soft‐bodied organisms and scavenge on dead arthropods.  相似文献   
68.
Degradation of folding- or assembly-defective proteins by the endoplasmic reticulum–associated degradation (ERAD) ubiquitin ligase, Hrd1, is facilitated by a process that involves recognition of demannosylated N-glycans by the lectin OS-9/XTP3-B via the adaptor protein SEL1L. Most of our knowledge of the machinery that commits proteins to this fate in metazoans comes from studies of overexpressed mutant proteins in heterologous cells. In this study, we used mass spectrometry to identify core-glycoslyated CD147 (CD147(CG)) as an endogenous substrate of the ERAD system that accumulates in a complex with OS-9 following SEL1L depletion. CD147 is an obligatory assembly factor for monocarboxylate transporters. The majority of newly synthesized endogenous CD147(CG) was degraded by the proteasome in a Hrd1-dependent manner. CD147(CG) turnover was blocked by kifunensine, and interaction of OS-9 and XTP3-B with CD147(CG) was inhibited by mutations to conserved residues in their lectin domains. These data establish unassembled CD147(CG) as an endogenous, constitutive ERAD substrate of the OS-9/SEL1L/Hrd1 pathway.  相似文献   
69.
Neotropical genera of Cephenniini characterized by an additional leg ‘segment’ (‘trochantellus’) are revised, and the following new taxa are described: Shyri gen.n. , Shyri pichincha sp.n. (type species of Shyri) (Ecuador), Shyri perversus sp.n. (Ecuador), Shyri quitu sp.n. (Ecuador), Shyri microphthalmus sp.n. (Ecuador), Monstrophennium gen.n. (type species: Cephennium spinicolle Schaufuss), Furcodes gen.n. , Furcodes apicalis sp.n. (type species of Furcodes) (Mexico), Furcodes tutule sp.n. (Honduras), Paracephennium pumilio sp.n. (Costa Rica), Pseudocephennium iwokramanum sp.n. (Guyana), Pseudocephennium trilineatum sp.n. (Guyana), Pseudocephennium araguanum sp.n. (Venezuela), Pseudocephennium maximum sp.n. (Venezuela), Pseudocephennium peruvianum sp.n. (Peru), Pseudocephennium cochabambanum sp.n. (Bolivia), Pseudocephennium saramaccanum sp.n. (Suriname) and Pseudocephennium brokopondonum sp.n. (Suriname). Pseudocephennium spinicolle (Schaufuss) is transferred to Monstrophennium. Cladistic analysis of characters from adult morphology of all genera of Cephenniini and a large outgroup sample from Cyrtoscydmini, Eutheiini, Scydmaenini, Clidicini and Mastigini strongly supported the monophyly of Cephenniini. However, only the Cephennomicrus group comprising nine genera was strongly supported as a monophyletic clade, while only weak support was found for the previously suggested Cephennodes group and Cephennium group. Two alternative hypotheses concerning the phylogeny of Cephenniini are put forward and discussed: (i) the Cephennium group is sister to all remaining Cephenniini; or (ii) the Cephennomicrus group is sister to all remaining Cephenniini. The Neotropical genera with ‘trochantellus’ form a well‐supported clade derived from the ancestral lineage of the Cephennodes group.  相似文献   
70.
Hexazonium pararosaniline is a valuable reagent that has been used in enzyme activity histochemistry for 50 years. It is an aqueous solution containing the tris-diazonium ion derived from pararosaniline, an aminotriarylmethane dye, and it contains an excess of nitrous acid that was not consumed in the diazotization reaction. Other investigators have found that immersion for 2 min in an acidic (pH 3.5) 0.0015 M hexazonium pararosaniline solution can protect cryostat sections of unfixed animal tissues from the deleterious effects of aqueous reagents such as buffered solutions used in immunohistochemistry, while preserving specific affinities for antibodies. In the present investigation hexazonium pararosaniline protected lymphoid tissue and striated muscle against the damaging effects of water or saline. The same protection was conferred on unfixed sections treated with dilute nitrous or hydrochloric acid in concentrations similar to those in hexazonium pararosaniline solutions. Model tissues (solutions, gels or films containing gelatin and/or bovine albumin) responded predictably to well known cross-linking (formaldehyde) or coagulant (mercuric chloride) fixatives. Hexazonium pararosaniline solutions prevented the dissolution of protein gels in water only after 9 or more days of contact, during which time considerable swelling occurred. It is concluded that there is no evidence for a “fixative” action of hexazonium pararosaniline. The protective effect on frozen sections of unfixed tissue is attributable probably to the low pH of the solution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号