首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6711篇
  免费   615篇
  国内免费   3篇
  2023年   30篇
  2022年   19篇
  2021年   159篇
  2020年   73篇
  2019年   123篇
  2018年   139篇
  2017年   115篇
  2016年   198篇
  2015年   341篇
  2014年   438篇
  2013年   535篇
  2012年   581篇
  2011年   573篇
  2010年   365篇
  2009年   343篇
  2008年   444篇
  2007年   428篇
  2006年   419篇
  2005年   388篇
  2004年   344篇
  2003年   319篇
  2002年   309篇
  2001年   47篇
  2000年   55篇
  1999年   77篇
  1998年   63篇
  1997年   47篇
  1996年   36篇
  1995年   40篇
  1994年   33篇
  1993年   28篇
  1992年   21篇
  1991年   18篇
  1990年   16篇
  1989年   19篇
  1988年   10篇
  1987年   20篇
  1986年   19篇
  1985年   11篇
  1983年   12篇
  1982年   3篇
  1981年   4篇
  1980年   13篇
  1979年   9篇
  1978年   8篇
  1977年   8篇
  1976年   3篇
  1975年   5篇
  1974年   4篇
  1972年   3篇
排序方式: 共有7329条查询结果,搜索用时 125 毫秒
21.
Sera from a total of 564 olive baboons collected at six different localities in west central Kenya were examined for the presence of cross-reactive immunoglobulin allotypes with reagents used for human sera. Serum samples were tested for Km (1 and 3), Glm (1–3 and 17), andG3m (5, 6, 10, 11, 13–16, 21, 24, and 26). Polymorphism was found for Glm (1 and 17) and G3m (10, 13, and 15). These findings on antigen presence, absence, and polymorphism show broad similarities to, along with some differences from, previous studies of baboons. Our data support the view that there are variations in allotype frequencies between troops at single localities, as well as differences among geographically separated areas. Linkage disequilibria for Gm allotypes differ in strength and direction among the various local Kenya olive baboon populations.  相似文献   
22.
Summary The organization of Gn-RH systems in the brain of teleosts has been investigated previously by immunohistochemistry using antibodies against the mammalian decapeptide which differs from the teleostean factor. Here, we report the distribution of immunoreactive Gn-RH in the brain of goldfish using antibodies against synthetic teleost peptide.Immunoreactive structures are found along a column extending from the rostral olfactory bulbs to the pituitary stalk. Cell bodies are observed within the olfactory nerves and bulbs, along the ventromedial telencephalon, the ventrolateral preoptic area and the latero-basal hypothalamus. Large perikarya are detected in the dorsal midbrain tegmentum, immediately caudal to the posterior commissure. A prominent pathway was traced from the cells located in the olfactory nerves through the medial olfactory tract and along all the perikarya described above to the pituitary stalk. In the pituitary, projections are restricted to the proximal pars distalis. A second immunoreactive pathway ascends more dorsally in the telencephalon and arches to the periventricular regions of the diencephalon. Part of this pathway forms a periventricular network in the dorsal and posterior hypothalamus, whereas other projections continue caudally to the medulla oblongata and the spinal cord. Lesions of the ventral preoptic area demonstrate that most of the fibers detected in the pituitary originate from the preoptic region.  相似文献   
23.
Summary The dopaminergic innervation of the goldfish pituitary gland was studied by immunocytochemistry at the electron-microscope level using highly specific antibodies against dopamine coupled to bovine serum albumin with glutaraldehyde. A satisfactory preservation of the tissue was achieved after immersion in 5% glutaraldehyde in phosphate buffer containing sodium metabisulfite to prevent oxidation of the endogenous dopamine. The immunocyto-chemical procedure was performed on Vibratome sections using the preembedding method. Immunoreactivity was restricted to part of the neurosecretory type-B fibers (diameter of the secretory vesicles lower than 100 nm) in which it was found to occupy the whole cytoplasm. Labeled fibers were observed within the neurohypophysis in the different parts of the gland and in the adenohypophyseal tissue where immunoreactive profiles were detected in close apposition to the different cell types. These data are in agreement with previous results obtained by means of radioautography and further support a role for dopamine in the neuroendocrine regulation of pituitary functions in teleosts.  相似文献   
24.
The models of punctuated and gradual evolution are put in a historical perspective and contrasted with each other. Mechanisms of saltational change are discussed. A synthesis of the two models might be achieved on the basis ofC. H. Waddington’s theory of developmental canalization as recently discussed byA. Hoffman.  相似文献   
25.
26.
27.
Summary Alpha-smooth muscle actin is currently considered a marker of smooth muscle cell differentiation. However, during various physiologic and pathologic conditions, it can be expressed, sometimes only transiently, in a variety of other cell types, such as cardiac and skeletal muscle cells, as well as in nonmuscle cells. In this report, the expression of actin mRNAs in cultured rat capillary endothelial cells (RFCs) and aortic smooth muscle cells (SMCs) has been studied by Northern hybridization in two-dimensional cultures seeded on individual extracellular matrix proteins and in three-dimensional type I collagen gels. In two-dimensional cultures, in addition to cytoplasmic actin mRNAs which are normally found in endothelial cell populations, RFCs expressed α-smooth muscle (SM) actin mRNA at low levels. α-SM actin mRNA expression is dramatically enhanced by TGF-β1. In addition, double immunofluorescence staining with anti-vWF and anti-α-SM-1 (a monoclonal antibody to α-SM actin) shows that RFCs co-express the two proteins. In three dimensional cultures, RFCs still expressed vWF, but lost staining for α-SM actin, whereas α-SM actin mRNA became barely detectable. In contrast to two-dimensional cultures, the addition of TGF-β1 to the culture media did not enhance α-SM actin mRNA in three-dimensional cultures, whereas it induced rapid capillary tube formation. Actin mRNA expression was modulated in SMCs by extracellular matrix components and TGF-β1 with a pattern very different from that of RFCs. Namely, the comparison of RFCs with other cell types such as bovine aortic endothelial cells shows that co-expression of endothelial and smooth muscle cell markers is very unique to RFCs and occurs only in particular culture conditions. This could be related to the capacity of these microvascular endothelial cells to modulate their phenotype in physiologic and pathologic conditions, particularly during angiogenesis, and could reflect different embryologic origins for endothelial cell populations. Supported by a Post-Doctoral Fellowship from the Swiss National Science Foundation (OK) and grant HL-RO1-28373 (JAM) from the Department of Human Services, Public Health Service, Washington, D.C.  相似文献   
28.
29.
Native small nuclear ribonucleoproteins (snRNPs) purified by several conventional procedures or reconstituted in vitro have no ribonuclease activity. However, when these same snRNPs are centrifuged in cesium chloride gradients at low [Mg2+] and in the presence of sarkosyl, an endoribonuclease is unmasked at the density of core particles (i.e. containing only the set of low molecular weight proteins common to all snRNPs), while an inhibitory component is released in soluble form. The nature of this inhibitor was not further investigated and the molecular events underlying this inhibition/activation process remained only a matter of speculation. On the other hand, evidence was obtained that the nuclease activity is carried by B-B' on the basis of its comigration with B-B' as well as with two of their cleavage products after SDS/polyacrylamide gel electrophoresis of snRNP proteins. One was identified by a B-B'-specific monoclonal antibody. Another one, especially prominent and migrating between D and E core proteins, was identified as the N-terminal half of B-B' by microsequence analysis. Although tightly associated with core snRNPs, the activity is not dependent upon the presence of an snRNA. For the time being, the functional significance of this nuclease remains entirely elusive.  相似文献   
30.
The effects of 50 microM of progesterone (P4), estradiol (E2), estrone (E1), estriol (E3), dehydroepiandrosterone (DHIA), androstenedione (delta 4) and testosterone (T) on the bioconversion of [3H]pregnenolone (6 nM) to [3H]P4 were investigated by incubating 200 mg of tissue fragments as well as equivalent aliquots of microsomes from human term placenta during 30 min. All the steroids assayed, except E3, significantly inhibited the [3H]P4 formation in a microsome incubation system with respect to the control assay (P less than 0.001). Conversely in a tissue incubation system. P4, E1 as well as E3 had no effect on [3H]pregnenolone bioconversion while E2 slightly decreased the [3H]P4 formation (P less than 0.05) compared with the control. A significant inhibition was observed in this system with the other steroids (P less than 0.001). To investigate these apparent different results of inhibition-noninhibition of the same steroids irrespective of the system of incubation used, the effects of P4, E2 and T on 3 beta-hydroxysteroid dehydrogenase/isomerase (3 beta-HSD) activity were studied in tissue fragments and microsomes in kinetic terms. The results found indicate that these steroids inhibited in a competitive fashion the 3 beta-HSD activity in both systems. The different Ki values found in tissue fragments and microsomes respectively for P4 (1.8 microM vs 0.5 microM), E2 (2.3 microM vs 0.6 microM) and T (0.25 microM vs 0.3 microM) explain the bioconversion results obtained in presence of 50 microM of the same steroids. These results include inhibition of [3H]P4 formation by T in tissue fragments as well as in microsomes whereas P4 and E2 inhibited the [3H]P4 formation only in microsomes. Furthermore, the comparison of these Ki values with the available data of intraplacental and circulating concentrations of the same steroids in human term pregnancy suggest that only P4 would be expected to cause marked 3 beta-HSD inhibition in physiological conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号