首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6699篇
  免费   606篇
  国内免费   3篇
  2023年   30篇
  2022年   16篇
  2021年   160篇
  2020年   72篇
  2019年   124篇
  2018年   139篇
  2017年   113篇
  2016年   200篇
  2015年   346篇
  2014年   439篇
  2013年   536篇
  2012年   581篇
  2011年   575篇
  2010年   368篇
  2009年   343篇
  2008年   446篇
  2007年   428篇
  2006年   419篇
  2005年   386篇
  2004年   343篇
  2003年   320篇
  2002年   305篇
  2001年   45篇
  2000年   51篇
  1999年   75篇
  1998年   67篇
  1997年   44篇
  1996年   34篇
  1995年   39篇
  1994年   33篇
  1993年   30篇
  1992年   21篇
  1991年   14篇
  1990年   15篇
  1989年   17篇
  1988年   10篇
  1987年   18篇
  1986年   16篇
  1985年   10篇
  1983年   12篇
  1981年   4篇
  1980年   13篇
  1979年   7篇
  1978年   8篇
  1977年   9篇
  1975年   5篇
  1974年   4篇
  1972年   2篇
  1970年   2篇
  1965年   2篇
排序方式: 共有7308条查询结果,搜索用时 328 毫秒
991.
Nonsense-mediated mRNA Decay (NMD) degrades mutant mRNAs containing premature termination codon (PTC-mRNAs). Here we evaluate the consequence of NMD activity in colorectal cancers (CRCs) showing microsatellite instability (MSI) whose progression is associated with the accumulation of PTC-mRNAs encoding immunogenic proteins due to frameshift mutations in coding repeat sequences. Inhibition of UPF1, one of the major NMD factors, was achieved by siRNA in the HCT116 MSI CRC cell line and the resulting changes in gene expression were studied using expression microarrays. The impact of NMD activity was also investigated in primary MSI CRCs by quantifying the expression of several mRNAs relative to their mutational status and to endogenous UPF1 and UPF2 expression. Host immunity developed against MSI cancer cells was appreciated by quantifying the number of CD3epsilon-positive tumor-infiltrating lymphocytes (TILs). UPF1 silencing led to the up-regulation of 1251 genes in HCT116, among which a proportion of them (i.e. 38%) significantly higher than expected by chance contained a coding microsatellite (P<2x10(-16)). In MSI primary CRCs, UPF1 was significantly over-expressed compared to normal adjacent mucosa (P<0.002). Our data provided evidence for differential decay of PTC-mRNAs compared to wild-type that was positively correlated to UPF1 endogenous expression level (P = 0.02). A negative effect of UPF1 and UPF2 expression on the host's anti-tumor response was observed (P<0.01). Overall, our results show that NMD deeply influences MSI-driven tumorigenesis at the molecular level and indicate a functional negative impact of this system on anti-tumor immunity whose intensity has been recurrently shown to be an independent factor of favorable outcome in CRCs.  相似文献   
992.
The Ras GTPase-activating protein RasGAP catalyzes the conversion of active GTP-bound Ras into inactive GDP-bound Ras. However, RasGAP also acts as a positive effector of Ras and exerts an anti-apoptotic activity that is independent of its GAP function and that involves its SH3 (Src homology) domain. We used a combinatorial peptide aptamer approach to select a collection of RasGAP SH3 specific ligands. We mapped the peptide aptamer binding sites by performing yeast two-hybrid mating assays against a panel of RasGAP SH3 mutants. We examined the biological activity of a peptide aptamer targeting a pocket delineated by residues D295/7, L313 and W317. This aptamer shows a caspase-independent cytotoxic activity on tumor cell lines. It disrupts the interaction between RasGAP and Aurora B kinase. This work identifies the above-mentioned pocket as an interesting therapeutic target to pursue and points its cognate peptide aptamer as a promising guide to discover RasGAP small-molecule drug candidates.  相似文献   
993.
Insulin resistance plays a central role in type 2 diabetes and obesity, which develop as a consequence of genetic and environmental factors. Dietary changes including high fat diet (HFD) feeding promotes insulin resistance in rodent models which present useful systems for studying interactions between genetic background and environmental influences contributing to disease susceptibility and progression. We applied a combination of classical physiological, biochemical and hormonal studies and plasma (1)H NMR spectroscopy-based metabonomics to characterize the phenotypic and metabotypic consequences of HFD (40%) feeding in inbred mouse strains (C57BL/6, 129S6, BALB/c, DBA/2, C3H) frequently used in genetic studies. We showed the wide range of phenotypic and metabonomic adaptations to HFD across the five strains and the increased nutrigenomic predisposition of 129S6 and C57BL/6 to insulin resistance and obesity relative to the other strains. In contrast mice of the BALB/c and DBA/2 strains showed relative resistance to HFD-induced glucose intolerance and obesity. Hierarchical metabonomic clustering derived from (1)H NMR spectral data of the strains provided a phylometabonomic classification of strain-specific metabolic features and differential responses to HFD which closely match SNP-based phylogenetic relationships between strains. Our results support the concept of genomic clustering of functionally related genes and provide important information for defining biological markers predicting spontaneous susceptibility to insulin resistance and pathological adaptations to fat feeding.  相似文献   
994.
Gene flow via seed and pollen is a primary determinant of genetic and species diversity in plant communities at different spatial scales. This paper reviews studies of gene flow and population genetic structure in tropical rain forest trees and places them in ecological and biogeographic context. Although much pollination is among nearest neighbors, an increasing number of genetic studies report pollination ranging from 0.5–14 km for canopy tree species, resulting in extensive breeding areas in disturbed and undisturbed rain forest. Direct genetic measures of seed dispersal are still rare; however, studies of fine scale spatial genetic structure (SGS) indicate that the bulk of effective seed dispersal occurs at local scales, and we found no difference in SGS (Sp statistic) between temperate (N?=?24 species) and tropical forest trees (N?=?15). Our analysis did find significantly higher genetic differentiation in tropical trees (F ST?=?0.177; N?=?42) than in temperate forest trees (F ST?=?0.116; N?=?82). This may be due to the fact that tropical trees experience low but significant rates of self-fertilization and bi-parental inbreeding, whereas half of the temperate tree species in our survey are wind pollinated and are more strictly allogamous. Genetic drift may also be more pronounced in tropical trees due to the low population densities of most species.  相似文献   
995.
The major DNA photoproduct in UV-irradiated Bacillus subtilis spores is the thymine dimer named spore photoproduct (SP, 5-(alpha-thyminyl)-5,6-dihydrothymine). The SP lesion has been found to be efficiently repaired by SP lyase (SPL) a very specific enzyme that reverses the SP to two intact thymines, at the origin of the great resistance of the spores to UV irradiation. SPL belongs to a superfamily of [4Fe-4S] iron-sulfur enzymes, called "Radical-SAM." Here, we show that the single substitution of cysteine 141 into alanine, a residue fully conserved in Bacillus species and previously shown to be essential for spore DNA repair in vivo, has a major impact on the outcome of the SPL-dependent repair reaction in vitro. Indeed the modified enzyme catalyzes the almost quantitative conversion of the SP lesion into one thymine and one thymine sulfinic acid derivative. This compound results from the trapping of the allyl-type radical intermediate by dithionite, used as reducing agent in the reaction mixture. Implications of the data reported here regarding the repair mechanism and the role of Cys-141 are discussed.  相似文献   
996.
In Gram-positive bacteria, a large subfamily of dual ATP-binding cassette proteins confers acquired or intrinsic resistance to macrolide, lincosamide, and streptogramin antibiotics by a far from well understood mechanism. Here, we report the first biochemical characterization of one such protein, Vga(A), which is involved in streptogramin A (SgA) resistance among staphylococci. Vga(A) is composed of two nucleotide-binding domains (NBDs), separated by a charged linker, with a C-terminal extension and without identified transmembrane domains. Highly purified Vga(A) displays a strong ATPase activity (K(m) = 78 mum, V(m) = 6.8 min(-1)) that was hardly inhibited by orthovanadate. Using mutants of the conserved catalytic glutamate residues, the two NBDs of Vga(A) were shown to contribute unequally to the total ATPase activity, the mutation at NBD2 being more detrimental than the other. ATPase activity of both catalytic sites was essential for Vga(A) biological function because each single Glu mutant was unable to confer SgA resistance in the staphylococcal host. Of great interest, Vga(A) ATPase was specifically inhibited in a non-competitive manner by the SgA substrate, pristinamycin IIA (PIIA). A deletion of the last 18 amino acids of Vga(A) slightly affected the ATPase activity without modifying the PIIA inhibition values. In contrast, this deletion reduced 4-fold the levels of SgA resistance. Altogether, our results suggest a role for the C terminus in regulation of the SgA antibiotic resistance mechanism conferred by Vga(A) and demonstrate that this dual ATP-binding cassette protein interacts directly and specifically with PIIA, its cognate substrate.  相似文献   
997.
Sulfatases are a major group of enzymes involved in many critical physiological processes as reflected by their broad distribution in all three domains of life. This class of hydrolases is unique in requiring an essential post-translational modification of a critical active-site cysteine or serine residue to C(alpha)-formylglycine. This modification is catalyzed by at least three nonhomologous enzymatic systems in bacteria. Each enzymatic system is currently considered to be dedicated to the modification of either cysteine or serine residues encoded in the sulfatase-active site and has been accordingly categorized as Cys-type and Ser-type sulfatase-maturating enzymes. We report here the first detailed characterization of two bacterial anaerobic sulfatase-maturating enzymes (anSMEs) that are physiologically responsible for either Cys-type or Ser-type sulfatase maturation. The activity of both enzymes was investigated in vivo and in vitro using synthetic substrates and the successful purification of both enzymes facilitated the first biochemical and spectroscopic characterization of this class of enzyme. We demonstrate that reconstituted anSMEs are radical S-adenosyl-l-methionine enzymes containing a redox active [4Fe-4S](2+,+) cluster that initiates the radical reaction by binding and reductively cleaving S-adenosyl-l-methionine to yield 5 '-deoxyadenosine and methionine. Surprisingly, our results show that anSMEs are dual substrate enzymes able to oxidize both cysteine and serine residues to C(alpha)-formylglycine. Taken together, the results support a radical modification mechanism that is initiated by hydrogen abstraction from a serine or cysteine residue located in an appropriate target sequence.  相似文献   
998.
Na,K-ATPase is the main active transport system that maintains the large gradients of Na(+) and K(+) across the plasma membrane of animal cells. The crystal structure of a K(+)-occluding conformation of this protein has been recently published, but the movements of its different domains allowing for the cation pumping mechanism are not yet known. The structure of many more conformations is known for the related calcium ATPase SERCA, but the reliability of homology modeling is poor for several domains with low sequence identity, in particular the extracellular loops. To better define the structure of the large fourth extracellular loop between the seventh and eighth transmembrane segments of the alpha subunit, we have studied the formation of a disulfide bond between pairs of cysteine residues introduced by site-directed mutagenesis in the second and the fourth extracellular loop. We found a specific pair of cysteine positions (Y308C and D884C) for which extracellular treatment with an oxidizing agent inhibited the Na,K pump function, which could be rapidly restored by a reducing agent. The formation of the disulfide bond occurred preferentially under the E2-P conformation of Na,K-ATPase, in the absence of extracellular cations. Using recently published crystal structure and a distance constraint reproducing the existence of disulfide bond, we performed an extensive conformational space search using simulated annealing and showed that the Tyr(308) and Asp(884) residues can be in close proximity, and simultaneously, the SYGQ motif of the fourth extracellular loop, known to interact with the extracellular domain of the beta subunit, can be exposed to the exterior of the protein and can easily interact with the beta subunit.  相似文献   
999.
1000.
Mixing and matching: the essence of plant systemic silencing?   总被引:3,自引:0,他引:3  
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号